

Welcome to the BRITE-REU Programming Workshop!

	Instructions

	Workshop 1: Linux and Bash

	Workshop 2: SCC and git

	Workshop 3: Python

	Workshop 4: R

	Workshop 5: Machine learning

	Workshop 6: SQL

	Posters

Note

This is a Work In Progress and is actively being updated.

Indices and tables

	Index

	Module Index

	Search Page

Instructions

Through the ten weeks you are at BU, we will introduce some useful programming tools and skills during six weekly programming workshop sessions. These include skills on using linux, the BU shared computing cluster (SCC), sharing your code and work on github using git, coding with R and Python, machine learning software, and the SQL database language. The sessions will have two parts, a 1 hour offline document or video that you study prior to attending the session and 2 hours hands-on session during which we will walk you through different commands and programs.

In order to participate, you will need to install the required tools and applications prior to coming to the classes. Below are the instructions to install an SSH Client, git, R and RStudio, Python and anaconda, RapidMiner, and mySQL. Please have them ready and running on your laptops so we can make the most out of the sessions. These instructions have been tested, but it’s not possible for us to run through all the installation steps for all operating systems. If you encounter a problem or need more clarification, please make a note and send it to us, or write up your own modification of these instructions. In case you have any difficulty, please contact us to fix any potential problems before the specific sessions start.

Instructors:

	Ali (LSEB room 104, email: aliamin@bu.edu)

	Dakota (LSEB room 645, email: dyh0110@bu.edu)

	Dileep (LSEB 9th floor, email: dkishore@bu.edu)

	Jeff (LSEB room 104, email: maurerj@bu.edu)

	Marzie (LSEB room 106, email: marzie@bu.edu)

	Tanya (LSEB room 645, email: tanyatk@bu.edu)

Workshop schedule:

	Week 2: Linux and Bash

	Week 3: Git and SCC

	Week 4: Python

	Week 6: R

	Week 7: Machine learning

	Week 8: SQL

All sessions meet Tuesday 1-3 pm in LSE 904

	 Linux and Bash
	Windows 10 (linux subsystem for windows)

	Windows 8- (Installing Babun)

	Mac / Linux

	 Git
	Git command-line

	Git GUI (cross-platform)

	 SSH
	Windows

	Mac and Linux

	 Python
	Anaconda

	 R
	Mac

	Windows Users

	 Machine Learning
	RapidMiner Studio

	 SQL
	SQLite

	MySQL – We are not using MySQL this year!

Linux/Unix and Bash

Windows 10 (linux subsystem for windows)

	Control Panel -> Programs and Features and click “Turn Windows Features on or off” on the top left pane

	
	In the dialog box, check “Windows Subsystem for Linux” and click Ok

	[image: unix_1]

	Reboot machine

	Start Menu -> Microsoft store -> Search for “Linux”

	
	Click “Get the apps” under the “Linux on Windows?” banner

	[image: unix_2]

	You’ll see a list of every Linux distribution currently available in the Windows Store. We recommend that you select “Ubuntu” (unless you know what you’re doing)

	To open the Linux environment you installed, just open the Start menu and search for whatever distribution you installed. For example, if you installed Ubuntu, launch the Ubuntu shortcut

	After installation it will ask to create a UNIX username and password

	You are now ready to use the bash shell

Windows 8- (Installing Babun)

Babun is just a customized and pre-configured Cygwin. You can install Cygwin if you’re familiar with that.

	Just download the dist file from here [http://babun.github.io], unzip it and run the install.bat script.

	After a few minutes Babun starts automatically.

	The application will be installed to the %USERPROFILE%\.babun directory.

	Use the /target option to install babun to a custom directory.

Mac / Linux

You default shell should already be bash.
Otherwise run: chsh -s /bin/bash

Git

Git command-line

Linux

If you’re on a RPM-based distribution:

$ sudo dnf install git-all

If you’re on a Debian-based distribution:

$ sudo apt install git-all

Mac

A macOS Git installer is maintained and available for download at the Git website [http://git-scm.com/download/mac]

Windows

Install git for windows [https://gitforwindows.org/]

Note

This is a project called Git for Windows, which is separate from Git itself

Git GUI (cross-platform)

Git is best used as a command line interface. Although git GUIs are not as powerful as the command line, it is still nice to be able to visualize your commit history. Git for windows comes with a GUI, but I recommend trying GitKraken [https://www.gitkraken.com/download] - it’s cleaner and comes with a light and dark UI.

[image: gitkraken]

SSH Client

In order to do anything on the Shared Computing Cluster (SCC) from your local computer, you first need to connect to the SCC using an SSH (Secure SHell) client. This task varies greatly based on your local operating system. Follow the SSH client installation instructions below depending on your operating system.

Windows

Option 1 - Mobaxterm

SSH client with x-forwarding capabilities for graphic sharing

	Download and install Mobaxterm from here [http://mobaxterm.mobatek.net/]

	
	Launch Mobaxterm and start a new session

	[image: ssh_1]

	
	Select SSH as the session type

	[image: ssh_2]

	
	Specify ssc1.bu.edu as the remote host and click “OK”

	[image: ssh_3]

	
	Your connection will be saved on the left sidebar, so the next time you can start your session by clicking the “scc1.bu.edu [SSH]” link. In the terminal window you will get a prompt to enter your BU login information and password

	[image: ssh_4]

Option 2 - PuTTY

	Download and Install PuTTY [https://www.putty.org/]

	
	Enter your connection settings

	
	Host name: scc1.bu.edu

	Port: 22 (leave as default)

	Connection type: SSH (leave as default)

[image: ssh_5]

	Click Open to start SSH session

	
	If this is your first time connecting to the server from this computer, you will see the following output. Accept the connection by clicking Yes

	[image: ssh_6]

	Once the SSH Connection is open, you should see a terminal prompt asking for your username: username@scc1.bu.edu and then your password

Mac and Linux

	Use built-in terminal for both

	Mac option: For X11-forwarding download XQuartz [https://www.xquartz.org/]

	To sign into the scc for Mac and linux, open a terminal

	Use ssh to connect to the SCC with your login credentials in the terminal your_local_machine% ssh username@scc1.bu.edu

	Enter BU kerberos password when prompted

	Type exit to close session

Python

Anaconda

To install Python, it is recommended to use the Anaconda distribution. Anaconda is a cross platform python distribution that packages useful tools for scientific programming in Python such as IDEs/text editors (Spyder/VSCode), package managing tools (pip/conda), interactive notebooks (Jupyter), and other useful tools. To install Anaconda use the following steps:

	Go to https://www.anaconda.com/download/

	It’s 2018, so make sure to download the Python 3.6 version. Python2 is rapidly being dropped from many important libraries, so Python3 is preferred.

	During installation on Windows, you may be asked if you would like to add Anaconda to your PATH. This will make Anaconda packages/Python available across your computer, so it’s up to you whether this is something you want. Installation on MAC/Linux should be straight forward.

	
	Once installation is successful, you will now have access to all the tools we need. To ensure everything installed properly, look for Anaconda Navigator in your applications. Launch the application, you should have a window that looks like this:

	[image: python]

	If the button under Jupyter Notebook reads “Install” please click it to ensure Jupyter Notebooks are installed.

	That’s it! You’re done!

R and Rstudio

R is a programming language which is commonly used in bioinformatics and statistics.

Mac

	
	Install R:

	
	Open an internet browser and go to www.r-project.org.

	Click the “download R” link in the middle of the page under “Getting Started.”

	Select a CRAN location (a mirror site) and click the corresponding link.

	Click on the “Download R for (Mac) OS X” link at the top of the page.

	Click on the file containing the latest version of R under “Files.”

	Save the .pkg file, double-click it to open, and follow the installation instructions.

	Now that R is installed, you need to download and install RStudio.

	
	To install R Studio:

	
	Go to www.rstudio.com and click on the “Download RStudio” button.

	Click on “Download RStudio Desktop.”

	Click on the version recommended for your system, or the latest Mac version, save the .dmg file on your computer, double-click it to open, and then drag and drop it to your applications folder.

	
	To Install the SDSFoundations Package

	
	Download SDSFoundations to your desktop (make sure it has the .tgz extension).

	Open RStudio.

	Click on the Packages tab in the bottom right window.

	Click “Install.”

	Select install from “Package Archive File.”

	Select the SDSFoundations package file from your desktop.

	Click install. You are done! You can now delete the SDSpackage file from your desktop.

Windows Users

	
	To Install R:

	
	Open an internet browser and go to www.r-project.org.

	Click the “download R” link in the middle of the page under “Getting Started.”

	Select a CRAN location (a mirror site) and click the corresponding link.

	Click on the “Download R for Windows” link at the top of the page.

	Click on the “install R for the first time” link at the top of the page.

	Click “Download R for Windows” and save the executable file somewhere on your computer. Run the .exe file and follow the installation instructions.

	Now that R is installed, you need to download and install RStudio.

	
	To Install RStudio

	
	Go to www.rstudio.com and click on the “Download RStudio” button.

	Click on “Download RStudio Desktop.”

	Click on the version recommended for your system, or the latest Windows version, and save the executable file. Run the .exe file and follow the installation instructions.

	
	To Install the SDSFoundations Package

	
	Download SDSFoundations to your desktop (make sure it has the .zip extension).

	Open RStudio.

	Click on the Packages tab in the bottom right window.

	Click “Install.”

	Select install from “Package Archive File.”

	Select the SDSFoundations package file from your desktop.

	Click install. You are done! You can now delete the SDSpackage file from your desktop.

Machine Learning

RapidMiner Studio

For the machine learning session we will use R and RapidMiner Studio. You can download RapidMiner Studio 8.2 [https://my.rapidminer.com/nexus/account/index.html#downloads]. For this course we will not use a license, but you can register to get feedback from other users. You can find installation guides here [https://docs.rapidminer.com/latest/studio/installation/]

SQL

SQLite

Install SQLite

(Note: the SQLite program is called sqlite3)

Windows:

See this very useful video to install SQLite
https://www.youtube.com/watch?v=zOJWL3oXDO8

Mac and Linux:

Should already be preinstalled. To check, open a terminal window and type “sqlite3”. To quit the program after you’ve started it, type “.quit”.

GUI:

There are two reasonably good GUIs for using SQLite. I haven’t used either extensively, so can’t make a strong recommendation, but I preferred SQLite Studio. These are not required for the workshop, but may be beneficial if you use the program after this summer.

	SQLite Studio. Download for all three major operating systems here: https://sqlitestudio.pl/index.rvt?act=download

	DB Browser for SQLite. Downloads are here: https://sqlitebrowser.org/

Test:

Follow these steps:

	In all three major operating systems, open a command terminal, create a directory called “sqlitedb”, and move to that directory

	Create a new database file called test.db by typing: “sqlite3 test.db”

	You should see something like this. If so, it’s working.

version 3.13.0 2016-05-18 10:57:30
Enter ".help" for usage hints.
sqlite>

	Exit the program by typing “.quit”

Tutorial and Documentation:

This is a good introduction:
https://www.tutorialspoint.com/sqlite/index.htm

This is the official SQLite Documentation:
https://sqlite.org

MySQL – We are not using MySQL this year!

For Mac, use the DMG archive.
https://dev.mysql.com/downloads/mysql/5.7.html#downloads

For Windows:
https://dev.mysql.com/downloads/mysql/5.7.html#downloads
Choose (mysql-installer-web-community-8.0.11.0.msi)

For linux:
https://dev.mysql.com/doc/refman/5.7/en/linux-installation.html

Install a mysql database interface

This gives a GUI interface to databases and their contents, as well as a window to write SQL commands.

On Mac use Sequel Pro: https://www.sequelpro.com/

On linux and Windows, use phpmyadmin: https://www.phpmyadmin.net/

See this wiki page for installing on Windows:
https://www.wikihow.com/Install-phpMyAdmin-on-Your-Windows-PC

Workshop 1: Linux and Bash

UNIX and Linux

UNIX is an operating system which was first developed in the 1960s, and has been under constant development ever since. It is a stable, multi-user, multi-tasking system for servers, desktops and laptops. There are many different versions of UNIX, although they share common similarities. The most popular varieties of UNIX are Sun Solaris, GNU/Linux, and MacOS X.

The UNIX operating system is made up of three parts; the kernel, the shell and the programs.

	The kernel: The kernel of UNIX is the hub of the operating system: it allocates time and memory to programs and handles the filestore and communications in response to system calls.

	The shell: The shell acts as an interface between the user and the kernel. The shell is a command line interpreter (CLI). It interprets the commands the user types in and arranges for them to be carried out. The commands are themselves programs.

	The programs: Programs are instructions that tell the computer what to do.

Everything in UNIX is either a file or a process. A process is an executing program identified by a unique PID (process identifier). A file is a collection of data. They are created by users using text editors, running compilers etc.

 1. CLI intro

1. CLI intro

Runtime ~ 5 min

If you were able to open a terminal, you should see something like this:

[image: ../../_images/terminal.png]
Most often, you will see your username, your current position in the file system, the “$” or “#” symbol and then a cursor.

Given this is a “command” line, type a command and then press enter!

[image: ../../_images/ls.png]
I gave the ls command, short for “list”. This lists all of the files in the current directory. Because of my personal settings, directories are colored in blue and regular files are colored white. If you are ever playing around with your terminal settings, setting colors on will prove to be useful. Another command is the cd command:

[image: ../../_images/cd.png]
By cd example, what I’m doing is changing my *C*urrent *D*irectory to the one named example. Using ls, I see that there are two files called poem.txt and prose.txt and a directory called there_is_nothing_in_here in the example directory. In the command cd example, cd is the command name and example is considered the first argument for that command.

The next command is the man command, and it stands for manual. It takes a single argument, the name of a command:

[image: ../../_images/man.png]
[image: ../../_images/man_ls.png]
You can press down, the space bar or page down to read down the manual, or up and page up to scroll back up. When you are done reading the manual, just press q and you’ll be brought back to the command line. Most manuals have several sections:

Name - Gives the name of the command

Synopsis - The usage of the command is written in a short hand

Description - Gives a description of the purpose of the command

Options - Optional flags that the command uses

Examples - Example command are given

Author - The people who wrote the command’s source code

Bugs - Known bugs/where to report bugs

Copyright - Who actually owns the source code

If we go down far enough on the ls manual, we’ll see that the -l flag gives the output in long list format. Here’s how you use flags:

[image: ../../_images/man_ls-l.png]

This lets you see a whole bunch of information about the files in the directory. Flags are just arguments and are often separated from other arguments by whitespace, such as a space. However, flags can be combined into a single argument as such:

[image: ../../_images/man_ls-la.png]

The -a flag lets you see hidden files and directories. Files become hidden by having the first character of their name be a .!

Also, clicking tab will do an auto-complete if what you’ve written out is unique and in the right spot. For example, typing cd is enough in the example directory for you to hit tab and autocomplete there_is_nothing_in_here, as there is no other directory in the current working directory to cd into. This works with commands as well, but commands tend to be short.

Woopdie doo, you can see files in a directory, go to nearby directories and look at manuals. You can do that with the file explorer GUI too. However, you’ll come to see that the terminal can do a lot of the things that the GUI cannot do. If you are still having trouble, there are resources online that can help bolster your knowledge, such as this tutorial series: https://youtu.be/MmHcOPJEjGA .

 2. Navigation and File Operations

2. Navigation and File Operations

	Filesystem Runtime ~ 5 min

	A filesystem is a structure that organizes how files are stored on the computer. In Unix, the two most basic objects are files and directories. Files can be things like text files or pictures. Directories contain files or other directories. Simple stuff.

The base directory of the Unix file system is called root, and it is symbolized by a forward slash, /. You can cd into it to see what’s there.

[image: ../../_images/cd_root.png]
Generally, all Unix systems have similar directories in their root directories. From there, you can cd into any directory that you have permission to enter. Now, remember how when we used ls -la there were two files there named . and ..?

[image: ../../_images/man_ls-la.png]
Well, . refers to your current directory and .. refers to the one outside of your current directory. If you decide you want to go back up the filesystem, you can type cd ...

[image: ../../_images/cd_up.png]

	Navigation Runtime ~ 10 min

	The cd command is such a simple function that it doesn’t even have a man page. It is not the only function that is used in navigating your filesystem, though. The pwd command outputs your current position:

[image: ../../_images/pwd.png]
Not very exciting.

There are more interesting ways to move from one place to another, for example, pushd:

[image: ../../_images/pushd.png]
It seems to do exactly what cd does. It moves you from one place to another. However, you can then use popd to return to wherever you left using pushd`:

[image: ../../_images/popd.png]
Files Runtime ~ 5 min

Let’s go back to ls -l:

[image: ../../_images/man_ls-la.png]
So what are all of those columns? In order, they are the file/directory’s permissions, number of links, the owner’s name, the owner’s group, the file size, the time of last modification and the file/directory name. Let’s go one at a time:

	Permissions - This column describes who has permission to read (r), write (w) or execute (x) that file. The first value is whether the file is a directory or not. The next set of 3 characters is the permissions set for the person who made the file, the Owner. The next set describe the permissions of members of the group that the Owner is a part of. The last set of values is the permissions to anybody else. If a directory is not executable by you, you may not enter it. If a directory is not readable by you, you may not ls the directory to read its contents.

	Number of links - 1 for files, directory has 1 for each file or directory they are directly near, including themselves

	Owner - The person who owns the file, generally the person who made it

	Group - The Owner’s group

	File size - In bytes

	Time of last modification - Month day year

	File name - It will be appropriately colored if you have the terminal settings. Filenames can be up to 256 characters long and can use any characters except the null character and the forward slash. However, please don’t use whitespace and non-alphanumeric symbols besides period, underscore and hyphen. Most other characters have special meanings, so trying to work with such a file will be difficult.

These values are all stored in what is known as an inode table, one for each file in the filesystem. This is not important for now, but just know that an empty file can still take up space on the server.

As hinted at before, some files can be executed. These files are known as executable, and can be activated like this:

[image: ../../_images/executable.png]
Notice how only ./hello_world.py and `pwd`/hello_world.py were able to run the program. There are a few ways to run an executable. Using ./ syntax is most reliable. Without it, the computer will look at what’s called a PATH variable and try to find something with that name in the PATH variable’s list. Instead, ./ tells the computer “hey, it’s in this directory. Don’t go elsewhere.”

File Operations Runtime ~ 10 min

More commands!

	touch - Sees if each argument is the name of a file. If so, it “touches” it and does nothing. If a file does not exist with that name, it will make an empty file with that name.

	mv - Stands for “move.” If the first argument is a file and the second is a directory, then that file is moved into that directory. If the name of the second argument doesn’t exist, then mv will simply rename the file/directory at argument 1 to the second. Careful, it’s very easy to clobber* files!

	cp - Stands for “copy.” Copies a file(s) from one place to another and can specify what the copy’s name is. Careful, very easy to clobber*.

	mkdir - “Make a directory.” Whatever arguments you give it, if a directory doesn’t exist with that name, then it will make it. You are safe from clobbering* with this one–it will throw an error if you try to do something wrong.

	rm - “Remove.” Removes whatever files. Will not remove a file you do not own. Be very, very careful when using this.

	rmdir - “Remove directory.” Removes the specified empty directories (directories that do not contain any files) you give it.

*clobber - to overwrite

[image: ../../_images/file_management.png]
What if you want to change the permissions of a file? There are commands for that:

	chmod - “change file mode bits.” Basically, you get to change permissions to files that you can modify. There’s a few syntax that you can use, but if you remember your binary, you can use the synatax shown.

	chown - “change owner.” Simple enough.

[image: ../../_images/file_permissions.png]
This is where 1 is execute permissions, 2 is write permissions and 4 is read permissions. Thus, 764 means that the user can do all three (1+2+4), the group can read and write (2+4) and anybody else can only read (4).

All right, you can see and change a lot of a file’s metadata, but how about its content?

	cat - “Concatenate.” Will concatenate the content of the files given as arguments and print the entire content of a file(s) to the screen.

[image: ../../_images/file_stuff_cat.png]

	head - Prints the first 10 lines of the files. You can also set how many lines you want it to print out instead of 10.

	tail - Prints the last 10 lines of the files. You can also set how many lines you want it to print out instead of 10.

[image: ../../_images/file_stuff_coin.png]

	less - Gives you the contents of a file one page at a time. Will sometimes allow you to read a compressed file without uncompressing it first.

[image: ../../_images/file_stuff_less1.png]
[image: ../../_images/file_stuff_less2.png]

 3. Grep/Awk/Sed

3. Grep/Awk/Sed

Materials to download

	Linux word dictionary [https://github.com/BRITE-REU/programming-workshops/tree/master/source/workshops/01_linux_bash/files/cracklib-small.txt]

	Mary had a little lamb [https://github.com/BRITE-REU/programming-workshops/tree/master/source/workshops/01_linux_bash/files/mary-lamb.txt]

	BRITE students [https://github.com/BRITE-REU/programming-workshops/blob/master/source/workshops/01_linux_bash/files/BRITE_students.txt]

Grep

Grep (an acronym for “Global Regular Expression Print”), finds a string in a given file or input.

Grep format:

grep [options] [regexp] [filename]

Grep usecases:

	Case-insensitive search (grep -i):

grep -i 'mary' mary-lamb.txt

	Whole-word search (grep -w):

grep -w 'as' mary-lamb.txt

	recursively search through sub-folders (grep -r <pattern> <path>):

grep -r '456' /<your_working_directory>/

	Inverted search (grep -v):

grep -v ‘the’ mary-lamb.txt

	Print additional (trailing) context lines after match (grep -A <NUM>):

grep -A1 'School' mary-lamb.txt

	Print additional (leading) context lines before match (grep -B <NUM>):

grep -B2 'School' mary-lamb.txt

	Print additional (leading and trailing) context lines before and after the match (grep -C <NUM>):

grep -C3 'School' mary-lamb.txt

	Print the filename for each match (grep -H <pattern> filename):

grep -H 'School' mary-lamb.txt

Regexp or regular expression:

Regexp is how we specify that we find to see a particular pattern (it could be words or characters).

	The period . matches any single character.

	* when the previous pattern could be matched zero or more times.

grep 'M.a' mary-lamb.txt
grep 'M*y' Mary_Lamb_lyrics.txt

AWK:

awk [options] [filename]

Named after the authors: Aho, Weinberger, Kernighan

	Print everything in the text file:

awk '{print}' BRITE_students.txt

	Now, let’s get the more specific. Let’s ask for names only:

awk '{print $1}' BRITE_students.txt

	What if we want to see two columns at the same time, let’s say name and GPA?

awk '{print $1" "$3}' BRITE_students.txt

	Now what let’s see what your info is (exact match):

awk '$1=="Ali"' BRITE_students.txt

	How can we see a particular pattern in our cohort (not an exact match):

awk '/Kat/ {print $0}' BRITE_students.txt

	Question for you: How do you print the name and favorite sport of students whose names contain the letter “u”?

<insert code here>

	How many students are there whose name begins with “Kat”?

awk '/Kat/{++cnt} END {print "Count = ", cnt}' BRITE_students.txt

	You could also run loops in awk, print all :

awk 'BEGIN {
 sum = 0; for (i = 0; i < 20; ++i) {
 sum += i; if (sum > 50) exit(10); else print "Sum =", sum
 }
}'

SED:

sed [options] [filename]

SED stands for “Stream EDitor”. It is a widely used text processing Linux tool.

	I want to read the first three lines of a text file:

cat BRITE_students.txt | sed -n 3p

	What if we want to replace one word with another:

cat mary-lamb.txt | sed 's/Mary/Maria/g'

	Let’s remove the 1st, 2nd and 5th lines from a text file:

sed -e '1d' -e '2d' -e '5d' BRITE_students.txt

	But what if we had a much longer list and wanted to remove more lines?

echo -e "1d\n2d\n5d" > my_lines.txt
cat my_lines.txt
sed -f my_lines.txt BRITE_students.txt

	Now let’s print the 2nd line to last:

cat BRITE_students.txt | sed -n 2,'$p'

 4. File editing in the terminal

4. File editing in the terminal

Typically, you’d want to turn on X-11 forwarding or mount the server onto your machine to work on some sort of GUI or IDE, but sometimes you just want to make a quick change to a file that you have write permissions. Well, I will describe vim, because that is our most used terminal editor. Vim is a very popular text editors these days, and has been around since the 1970s.

You activate vim by typing vim followed by a file name. If the file doesn’t already exist, then it will be created when you save you work.

When you first enter vim, you will be in normal mode. Here, you can go into other modes to perform commands, or you can go into editor mode by pressing i once. Once in editor mode, you can type your code. You can only move the cursor in the four directions, no mouse. However, if you go back into normal mode, you can do some navigating tricks:

	^ - This brings you to the beginning of a line

	$ - This brings you to the end of a line

	G - This brings you to the end of the file

	gg- This brings you to the beginning of the file

	0 - Often synonymous with ^

-/.*- It’s a find function. After typing a forward slash, you may write anything. upon pressing enter, vim will search the document and bring your cursor to the first instance of that string.

You can also do some editting tricks with vim:

	[0-9]* dd - type a number and then dd. This will delete that many lines below you.

	D - delete until the end of a line

	u - undo the last action

	[0-9]* y - “yank.” It means to copy. Regular select control-c works.

	p - Paste. Regular control-p works too, not in conjunction with yank, though.

if you ever type control-s, vim will keep recording your actions, but not display them, appearing to be stuck. Press control-q to get out of that jam.

To leave vim, go into normal mode from editor mode by pressing escape. Then press :. You can follow this with:

	q - quit. No changes made.

	q! - quit. Discard changes made.

	w - save. returns you to normal mode afterwards.

	wq - save and return to CLI.

Other text editors exist, such as emacs and nano. Find the one that works best for you and learn all of their tricks!

 5. Piping and Redirection

5. Piping and Redirection

I/O redirection and concepts covered in the video:

	Standard output (stdout), standard input (stdin), standard error (stderr)

	>, >> - redirect stdout and replace/append to file

	2>, 2>> - redirect stderr and replace/append to file

	&>, &>> - redirect both stdout and stderr and replace/append to file

	> - stdin redirect from file

	| - pipe stdout from one program to another

 6. Processes

6. Processes

Concepts covered in the video:

	PID - Process identifier

	init - Initial process that starts all the other processes

	Parent PID

	UID - User identifier

	Process priority

	ps - print out information on running processes

	TTY - terminal process is associated with

	fg - brings background job to foreground

	kill - Terminate a process

	top - Browse processes

 7. Bash scripting

7. Bash scripting

A bash script is a file containing commands that can run on the bash shell. They usually have the .sh extension.

A minimal example

#!/usr/bin/env bash
A simple bash script

echo "Hello World"

Note

#! is called the “shebang”. It indicates the path to the program/interpreter that would be used to execute the script.

Execution

$./myscript.sh
bash: ./myscript.sh: Permission denied
$ ls -l myscript.sh
-rw-r--r-- 18 dkishore users 4096 Jun 10 09:12 myscript.sh

	The permissions on the script need to be changed to allow for execution - chmod +x myscript.sh

	The file can be executed either as ./myscript.sh or bash myscript.sh

Variables

#!/bin/bash
cp $1 $2
Verification
echo Details for $2
ls -lh $2

$1 and $2 are the first and second arguments to the script.

Note

	$0 refers to the name of the bash script

	$# refers to the number of arguments passed to the script

	$@ refers to all the arguments supplied

	$? refers to the exit status of the most recent process

Setting your own variables:

#!/bin/bash
myvariable=Hello
anothervar=Fred
echo $myvariable $anothervar
sampledir=/etc
echo $sampledir

Note

	Use quotes if your value has a space. Eg: myvar="Hello World!"

	When referring to or reading a variable we place a $ sign before the variable name

	When setting a variable we leave out the $ sign

	
	Do not use white-space around the =

	
	var=23, that’s the correct variable assignment syntax: a word that
consists of unquoted letters followed by an unquoted = that appears
before a command argument (here it’s on its own)

	var =23, the var command with =23 as argument (except in zsh where
=something is a special operator that expands to the path of the
something command. Here, you’d likely to get an error as 23 is
unlikely to be a valid command name).

	var= 23, an assignment var= followed by a command name 23. That’s
meant to execute 23 with var= passed to its environment (var
environment variable with an empty value).

	var = 23, var command with = and 23 as argument. Try with echo = 23
for instance.

Command Substitution

myvar=$(ls /etc | wc -l)
echo $myvar

Command substitution is nice and simple if the output of the command is
a single word or line. If the output goes over several lines then the
newlines are simply removed and all the output ends up on a single line.

Exporting variables

Scripts are run in their own process hence you cannot use a variable you
assign outside of the script, in the script. To use external variables they need to be exported.

script1.sh

#!/bin/bash
demonstrate variable scope 1.
var1=blah
var2=foo
Let's verify their current value
echo $0 :: var1 : $var1, var2 : $var2
export var1
./script2.sh
Let's see what they are now
echo $0 :: var1 : $var1, var2 : $var2

script2.sh

#!/bin/bash
demonstrate variable scope 2
Let's verify their current value
echo $0 :: var1 : $var1, var2 : $var2
Let's change their values
var1=flop
var2=bleh

result

./script1.sh
script1.sh :: var1 : blah, var2 : foo
script2.sh :: var1 : blah, var2 :
script1.sh :: var1 : blah, var2 : foo

Input

#!/bin/bash
Ask the user for their name
echo Hello, who am I talking to?
read varname
echo It\'s nice to meet you $varname

Run the command read and save the users response into the variable varname.

Arithmetic

	let

#!/bin/bash
Basic arithmetic using let
let a=5+4
echo $a # 9
let "a = 5 + 4"
echo $a # 9
let a++
echo $a # 10
let "a = 4 * 5"
echo $a # 20
let "a = $1 + 30"
echo $a # 30 + first command line argument

	expr

#!/bin/bash
Basic arithmetic using expr
expr 5 + 4 # 9
expr "5 + 4" # 5 + 4
expr 5+4 # 5+4
expr 5 * $1
expr 11 % 2
a=$(expr 10 - 3)
echo $a # 7

	double parentheses

#!/bin/bash
Basic arithmetic using double parentheses
a=$((4 + 5))
echo $a # 9
a=$((3+5))
echo $a # 8
b=$((a + 3))
echo $b # 11
b=$(($a + 4))
echo $b # 12
((b++))
echo $b # 13
((b += 3))
echo $b # 16
a=$((4 * 5))
echo $a # 20

If statements

	If statements

#!/bin/bash
Basic if statement
if [$1 -gt 100]
then
 echo "Hey that\'s a large number."
 pwd
fi

	The square brackets in the if statement is a reference to the test command.

	-gt is equivalent to >=. Similarly there are !, -n, -z, =, != and many more.

	Can be alternatively used as test 001 = 1. (This won’t return anything you can test the exit status using $?. 0 means TRUE and 1 means FAILURE).

	If-else

#!/bin/bash
else example
if [$# -eq 1]
then
 nl $1
else
 nl /dev/stdin
fi

	If-else-if

#!/bin/bash
elif statements
if [$1 -ge 18]
then
 echo "You may go to the party."
elif [$2 == 'yes']
then
 echo "You may go to the party but be back before midnight."
else
 echo "You may not go to the party."
fi

	Case statements

#!/bin/bash
case example
case $1 in
 start)
 echo starting
 ;;
 stop)
 echo stoping
 ;;
 restart)
 echo restarting
 ;;
 *)
 echo "don\'t know"
 ;;
esac

Note

The ;; are used as break statements

Loops

	while loop

#!/bin/bash
Basic while loop
counter=1
while [$counter -le 10]
do
 echo $counter
 ((counter++))
done
echo "All done"

	until loop

#!/bin/bash
Basic until loop
counter=1
until [$counter -gt 10]
do
 echo $counter
 ((counter++))
done
echo "All done"

The until loop is the exact opposite of the while loop

	for loops

#!/bin/bash
Basic for loop
names='Stan Kyle Cartman Kenny' # is one way to define lists
for name in $names
do
 echo $name
done
echo All done

	Ranges and Iterators

#!/bin/bash
Basic range in for loop
for value in {1..5}
do
 echo $value
done
echo All done

Note

	You can have custom range by providing a step. Eg. {10..0..2}

	GNU seq can also be used to create custom iterators. Eg. seq 10 -2 0

Functions

	Simple example

#!/bin/bash
Basic function
print_something () {
 echo Hello I am a function
}
print_something

	Passing arguments

#!/bin/bash
Passing arguments to a function
print_something () {
 echo Hello $1
}
print_something Mars
print_something Jupiter

	Return values

Bash functions don’t allow for return values however they allow for a return status

#!/bin/bash
Setting a return status for a function
print_something () {
 echo Hello $1
 return 5
}
print_something Mars
print_something Jupiter
echo The previous function has a return value of $?

	Variable scope

#!/bin/bash
Experimenting with variable scope
var_change () {
 local var1='local 1'
 echo Inside function: var1 is $var1 : var2 is $var2
 var1='changed again'
 var2='2 changed again'
}
var1='global 1'
var2='global 2'
echo Before function call: var1 is $var1 : var2 is $var2
var_change
echo After function call: var1 is $var1 : var2 is $var2

result

Before function call: var1 is global 1 : var2 is global 2
Inside function: var1 is local 1 : var2 is global 2
After function call: var1 is global 1 : var2 is 2 changed again

 8. Tips and tricks

8. Tips and tricks

Customizing your .bashrc

 Workshop 2: SCC and git

Workshop 2: SCC and git

SCC and git
In this online workshop you will learn about the Shared Computing Cluster (SCC) that we use at BU.
You will also learn version control using git.

You are expected to study the the following content:

	The SCC

	Submitting jobs

	GitHub tutorial [https://try.github.io] wich will introduce you to the basic git commands such as git config, git init, git status, git clone, git add, git commit, git push, and git pull.

	and the Version control with git portion

In the hands-on workshop we will work on ssh login, loading modules and job submitting.
Then we will continue to clone a sample repository and work on forking, resolving conflicts and more advanced git commands.

Tutorials

	The SCC
	Shared Computing Cluster

	SCC Architecture

	File Storage

	SSH Login

	Submitting jobs
	Types of Jobs

	Submitting jobs using qsub

	Resources required to run a job

	Job status and deletion

	Version control with git
	Version control platforms

	Installing configuration

	Useful tips

	Issue tracking

	Workshop 2
	Part 2.1: SCC and qsub

	Part 2.2: Version control with git

 1. The SCC

1. The SCC

Shared Computing Cluster

The Shared Computing Cluster (SCC) at Boston University is a Linux cluster with over 690 nodes, 14,000 processors, 324 GPUs, and currently over 4.2 petabytes of disk storage. The SCC is located in Holyoke, MA at the Massachusetts Green High Performance Computing Center (MGHPCC), a collaboration between 5 major universities and the Commonwealth of Massachusetts.

The SCC is suitable for high-performance computing in various areas of research such as bioinformatics and is commonly used to:

	Share and store data

	Run code that exceeds workstation capability (RAM, Network, Disk)

	Run code that runs for long periods of time (hours, days, weeks)

	Run code in highly parallelized formats (use 100 machines simultaneously)

	Access specialized software packages

SCC Architecture

The SCC uses the linux command line environment. To use the SCC, you must login to one of several login nodes. Everyone who has a BU ID can login to SCC1. If you are on a project, you can login to SCC2. For users in the Earth and Environmental Departments, use GEO login node. For BUMC users and for work on sensitive data, you can login to SCC4.

Note: SCC4 is only accessible through the BU network. To work remotely, you will need to use a virtual private network (VPN) to connect to the BU network.

For more information:

https://www.bu.edu/tech/support/research/system-usage/getting-started/connect-ssh/

http://www.bu.edu/tech/services/cccs/remote/vpn/use/

File Storage

1. Home Directory

This directory is entirely controlled by you. The default permission are set so that no other user can see or access your files. Home directories have a quota of 10 GB.

2. Backed Up Project Disk Space

Research projects are by default granted 50GB of backed-up space (/project/project_name/). Files that cannot be replaced and source code should be stored in this space.

3. Not Backed Up Project Disk Space

Projects are by default granted 50 GB of space(/projectnb/project_name/). Files generally stored in this space include output files, downloaded data sets, and large quantities of data that you could recreate in the unlikely event of data loss.

4. Scratch Space

Each node has a directory called /scratch stored on a local hard drive. This can be used by batch jobs to quickly write temporary files. If you wish to keep these files, you should copy them to your own space when the job completes.

Note: Scratch files are kept for 30 days, with no guarantees.

http://www.bu.edu/tech/support/research/system-usage/running-jobs/resources-jobs/local_scratch/

Recovering lost files use Snapshots

You can retrieve lost files by using snapshots. Snapshots are copies of files from home directories and Project Disk Space that are stored within the file system. This is convenient when you want to retrieve a file that was lost or accidentally deleted.

For more information:

http://www.bu.edu/tech/support/research/computing-resources/file-storage/

SSH Login

To connect to the SCC, first you will need to download an SSH Client or use a terminal application depending on your operating system. An SSH client is a software program which uses the secure shell protocol to connect to a remote computer.

Go to the Instructions section to download the appropriate software to connect to the SCC.

To login to the SCC:

Windows/MobaXterm

local_prompt% ssh tanyatk@scc1.bu.edu

Mac

local_prompt% ssh –Y tanyatk@scc1.bu.edu

Linux

local_prompt% ssh –X tanyatk@scc1.bu.edu

Once you login, you will find yourself in your home directory.

 1. Running Jobs

1. Running Jobs

The SCC is also a space to run code or other jobs that require multiple resources that are unavailable on a local workstation, including jobs that exceed workstation capability (RAM, Network, Disk), long periods of time to run (hours, days, weeks), and specialized software.

Types of Jobs

Interactive job – running interactive shell: run GUI applications, code debugging, benchmarking of serial and parallel code performance;

Interactive Graphics job (for running interactive software with advanced graphics) .

Batch job – execution of the program without manual intervention;

During the workshop, we will focus on batch jobs.

Submitting jobs using qsub

To submit a non-interactive job, you will use the qsub command.

scc1 % qsub [options] command [arguments]

Example: Submit code printenv using qsub to print the environment variables

scc1 % qsub -b y printenv
Your job #jobID ("printenv") has been submitted

The option -b y tells the batch system that the following command is a binary executable. The output message of the qsub command will print the job ID, which you can use to monitor the job’s status within the queue.

While the job is running the batch system creates stdout and stderr files in the job’s working directory. These files are names after the job (i.e. printenv) followed by the job’s id number.

For example,

printenv.o#jobID - the output of the command

printenv.e#jobID - list of errors, if any, that occurred while the job was running

Another way to submit a job using qsub is through a bash script (job_script.sh) that specifies the options, commands, and arguments required to run the job.

scc1 % qsub job_script.sh

Resources required to run a job

There are a number of directives or options that the user can pass to the batch system. These are provided as arguments to the qsub command or added as lines with symbols #$ in the job script.

Example: Qsub command arguments

scc1% qsub -l h_rt=24:00:00 -N myjob -j y printenv

Example: Job Script arguments

#!/bin/bash
#$ -l h_rt=24:00:00 # Specify the hard time limit for the job
#$ -N myjob # Give job a name
#$ -j y # Merge the error and output streams into a single file

printenv

The table below shows general directives that are commonly used including specifying the number of processes or project name required to run a job.

[image: ../../_images/Qsub_Resources.png]
To request other resources besides the general directives, the scc website details available directives that can be requested.
http://www.bu.edu/tech/support/research/system-usage/running-jobs/submitting-jobs/

Job status and deletion

After submitting a job, you can check the status of your job using the qstat command.

Checking status of a batch job:

scc1% qstat -u <userID>

List running jobs only:

scc1% qstat -s r <userID>

Checking information about a job:

 scc1% qstat -j <userID>

Display resources requested by the user jobs:

scc1% qstat -r <userID>

To retreive information about a past job, you can use the qacct command.

Information about a specific job:

scc1% qacct -j <userID>

Information about all jobs that were run in the past number of days:

scc1% qacct -o <userID> -d <number of days> -j

To delete a job, you can use the qdel command.

Delete all jobs of user:

scc1% qdel -u <userID>

Delete specific job:

scc1% qdel <jobID>

 3. Version control with git

3. Version control with git

During your career as a researcher, you will write code and create documents over time, go back and edit them, reuse parts of it, share your code with other people or collaborate with others to make tools and documents.

Have you ever had the problem that you lost files that weren’t saved? Or have you gone to a conference or interview and met someone interested in your work and realized you don’t have the files on your laptop? On a gloomy day, have you changed some part of your code when suddenly everything broke and you wished you could just go back to the previous working version, but alas there is no backup and you have tens of folders with misleading names?

Or are you familiar with the scenario, in which you are working with a group, writing a function and then notice another person simultaneously making changes to the same file and you don’t know how to merge the changes? Or someone makes changes to your working version and now when you run it, everything crashes? Have you experienced these or a million other situations when you felt frustrated and stressed and spent hours trying to fix things and wished there was a time machine to go back in time? The time machine has been invented, version control.

What is version control? [https://www.atlassian.com/git/tutorials/what-is-version-control]

	You can save all your code, data, and documents on the cloud, as you develop a project.

	You can manage the versions throughout time and see which changes were made at which time, and by whom.

	You can find other projects, import their scripts and modify them to reuse them for your purpose.

	You can share your code online: it’s good for science and it’s good for your resume.

	If you are a PhD student, you can start saving your files early on, and by the time you finish, you will have all your analyses documented and easily accessible, which will help a lot when you’re writing your thesis.

How does all the magic happen? Usually using git.
So what is git? [https://www.atlassian.com/git/tutorials/what-is-git]
git is a open source tool, which features functionalities to make repositories, download them, get and push updates. It can allow for teams to work on the same project, manage conflicts, monitor changes and track issues.

Version control platforms

The most widely used version control platforms supporting git are Bitbucket [https://bitbucket.org/] and GitHub [https://github.com/].

	Repositories on Bitbucket are by default private and only viewable by you and your team.

	Repositories on GitHub are by default public (everyone can see them), and to make them private you need to pay.

For a more comprehensive comparison of the two platforms see this comparison by UpGuard [https://www.upguard.com/articles/github-vs-bitbucket]. When choosing a platform you must consider the limitations of each tool, and if you are employed in research, most likely, you will have to use the platform preferred by your research institute or company. Note that Bitbucket has a limitation on the number of teams one can make for free, and after some point you will need to pay.

Another platform for git is Gitlab [https://about.gitlab.com/].

So go on, start by signing up and making a username of these platforms. Use Bitbucket for in-progress work, and GitHub for publishing. Choose a professional ID for your GitHub account and put it on your CV.

Installing configuration

How will you run git on your system? If you prefer terminals, just install git and you are good to go. You can install git on a Debian system using:

sudo apt-get install git

or on a Red Hat based system

sudo yum install git

and on Mac

brew install git

For Windows, to get a git shell you can install TortoiseGit [https://tortoisegit.org/].
If you prefer to work with a GUI, you could install gitKraken [https://www.gitkraken.com/] on all three Operating Systems.

If you are using a terminal, the first thing to do is configure git with your username and email. The username will be printed on the commits and changes you make. The email will be used to log in. You will be prompted for your password when pushing and pulling from the server.

git config --global user.name "[your_username]"
git config --global user.email "[your_email]"

git is pretty simple.
You can find a list of git commands here [https://confluence.atlassian.com/bitbucketserver/basic-git-commands-776639767.html].
The most typical use of git consists of: git init to initialize a new repository, git clone to copy a repository onto your local computer, git add to make a list of changes you made locally, git commit to make a log of your changes, git push to send the changes to the online repository, and git pull to get changes.

SSH vs HTTPS

The connection to the server is secured with SSH or HTTPS. It is recommended to use HTTPS, but if you want to, you can use SSH.
GitHub explains which URL to use [https://help.github.com/articles/which-remote-url-should-i-use/].
Typically when cloning you will see sometimes the repository has a .git at the end, and sometimes it doesn’t.
If you use SSH you will need an SSH key. Read here to learn how to connect to GitHub with SSH [https://help.github.com/articles/connecting-to-github-with-ssh/] Bitbucket gives you the option of using either one.

[image: ../../_images/HTTPS_SSH_bitbucket.png]
When using your_username to clone/fetch a repository from the_author, an SSH url will look like:

git@bitbucket.org:[the_author]/[repository].git

and HTTPS will look like:

https://[your_username]@bitbucket.org/[the_author]/[repository].git.

git tutorial

There are plenty of nice turorials to learn git on the web.
The best may be the GitHub tutorial [https://try.github.io] which features a built-in terminal that you can use to walk through the commands step by step.
The Bibucket tutorial from Atlassian [https://www.atlassian.com/git/tutorials/setting-up-a-repository] is a very comprehensive and detailed turorial, and overall, a good resource to find what you need.

Try this at home

Start with the GitHub tutorial [https://try.github.io] and finish the 15 modules of level 1.
Notice the folder structure and the hidden .git folder.
For the workshop, we expect you to know how to clone a repository, add and commit changes, push to, and pull from the repository.

Useful tips

Let’s go over some standards to keep in mind when using git.

commit messages

When you are committing your changes always use meaningful messages.

git commit -m "[a brief meaningful message explaining what the change was about]"

Avoid vague messages such as changed file x and fixed function y. The commit itself shows which files have been changed. The message should explain the functionality of the change.

Another important concept is that, each commit should have one functionality. It is not a good practice to make a lot of progress then push all the changes at once. The server will not run out of space if you do several commits. Commits are very useful to track the jobs you have completed.

When you find a conflict or something is not working, do not make duplicate files. For example, having main.tex and then creating main1.tex is confusing and voids the purpose of version control.

Commits can be undone. Conflicts can be resolved. And we will learn how to fix mistakes.

Semantic versioning

Have you ever wondered how developers decide how to number the different versions of their software?
Do they just randomly come up with numbers? No, the version number consists of 3 numbers, x.y.z where x is a major change, y is a minor change and z a patch. There is official documentation [http://semver.org/] on this, which you can read if you are interested. But assume you have a tool that reads some data and performs some function on the data. If you find a bug and fix it, you publish the fix by adding to z. If you added a small functionality, for example support for compressed data input and compatibility with other tools, increase y. If you added another function to it, increase x.

GNU licensing

git is opensource.
If you use GitHub and/or Bitbucket, you can publish your tool with the GNU licensing.
GNU is open source, and open source does not mean free.
Whenever using code with GNU licensing, you must cite the authors/developers.
For more information on the license check the GNU organization documentation [https://www.gnu.org/licenses/gpl-3.0.en.html].

Readme and MarkDown syntax

It’s a good practice to make a Readme. The Readme file can be made online using the editors GitHub and Bitbucket provide. Typically they are written in MarkDown syntax, which is very simple. You might have heard about R MarkDown, but MarkDown is a syntax that R has knitted into its compiler. Again there are many tutorials to learn MarkDown. You can check the syntax on the Atlassian website [https://confluence.atlassian.com/bitbucketserver/markdown-syntax-guide-776639995.html].

A Readme should include information about:

	name of the tool and the version,

	what is this tool about,

	who are the authors,

	requirements and dependencies,

	how to install /clone it,

	how to run it,

	what is the input and output,

	licensing,

	how to cite it.

Look at this nice outline [https://gist.github.com/PurpleBooth/109311bb0361f32d87a2] for a standard Readme file in MarkDown syntax. To get the source code click the Raw button on the top left.

Issue tracking

Both Bitbucket and GitHub allow for issue tracking. Members of a team can create an issue, assign it to a developer or admin, and comment on it. An issue can be marked according to its importance and type, for example, fixing a bug or adding functionality; and the issue can be resolved once it is has been taken care of. Issues can be linked to commits, to show which commit resulted in resolving an issue.

When a repository is publicly accessible, you can create issues to inform the developers there is a bug or a functionality you would be interested in. So, the next time you find an issue with some tool that you can’t resolve after trying for a few days, just post an issue on their GitHub repository.

 Workshop 2: SCC and git

Workshop 2: SCC and git

Part 2.1: SCC and qsub

Login into SCC

ssh [username]@scc1.bu.edu

Loading modules

SCC has many preinstalled programs and utilities which we refer to as modules.
You can search for different modules using:

module avail [pattern]

To load a specific module use module load:

module load [module_name]

For example let’s check for all the available JAVA versions on SCC and load version 9.

module avail java
module load java/9.0.1
java -version

Submitting jobs to the SCC

When you ssh to the SCC you are connected to a head node.
Head nodes are the only nodes on the cluster that are connected to the internet (so that you can access the SCC).
They are the busiest and maintain all user connections. We should not run any program on the head node.
By default your program will be killed if it runs more than 20 minutes,
but even if you have some code that runs in 5 minutes, do not run it on the head node and always submit it as a job.

qsub -P [project_name] -N [name_of_job] [bash_script]

When a job is running the standard output of it will be saved in a file names [job_name].o[job_ID] and the standard error output will go to [job_name].e[job_ID] in the directory you called qsub. To merge them use -j y (join=yes).
For a full list of parameters and option for qsub see
here [http://www.bu.edu/tech/support/research/system-usage/running-jobs/submitting-jobs/].
You can see how to allocate more memory, multiple processes to multi-threaded jobs, send notification emails upon the completion of your job, …
Note the machines and resources available.

Useful parameters

	Send an email upon ending: -m e -M [email]

	Get multiple processes/slots: -pe omp [#processes]

	Set the maximum (hard) running time: -l h_rt=hh:mm::ss

Once the job is given the resources it requires you can check the status of your ongoing jobs using qstat:

qstat -u [username]

This will return all the running jobs with their job_ID, name, starting time, and status (qw=waiting, r=running).

To delete/stop a job use qdel.

qdel [job_ID]

Useful tips

	Always use a meaningful name for your jobs. In general always use meaningful names!

	Do not allocate more resources than you need. This will not make your program run faster. If your program is not meant to be multi-threaded or asking for too much memory when your program is not memory expensive, allocating more than one process just makes you wait longer in the queue. In general, don’t be wasteful!

	You can use j_hold to make one job to wait for another one to finish then run. If the job is running the machine associated to it will be shown too. You can ssh to that machine and see the status of that job, too. Use top -u [username] to see your ongoing processes and the amount of resources they use.

Hands on activity

Here we will do an activity.
SRA toolkit [https://www.ncbi.nlm.nih.gov/sra/docs/] is a useful tool used to download sequencing data from GEO [https://www.ncbi.nlm.nih.gov/geo/].
Here we will use the toolkit to download some RNASeq data.

Log on to SCC.

ssh [username]@scc1.bu.edu

Choose some RNAseq data
First Query for a series [https://www.ncbi.nlm.nih.gov/geo/browse/?view=series] on GEO.
For example the GSE113476 series [https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE113476] contains human breast cancer PDX samples.
Get the SRA project (SRP) accession ID (SRP141444 [https://www.ncbi.nlm.nih.gov/sra?term=SRP141444]) in the relations box.
To download this project, we need to get all the sample files (with SRR accession IDs).
To do so use SRA Run Selector [https://www.ncbi.nlm.nih.gov/Traces/study/] and search project SRP141444.
Get the accession list (SRR for each sample). Save it as a file on SCC either with filezilla or just vim.

vim SRR_Acc_List.txt

Copy the first four SRR IDs into the file and save it:

SRR7050666
SRR7050667
SRR7050668
SRR7050669

Load sra toolkit.
See what versions of the toolkit are available.

module avail sra

Load the default version.

module load sratoolkit

Make a bash script to download it.
Make a script to read the SRR accession IDs one by one and fastq-dump them into a directory.

vim dl_sra.sh

Copy the following code into the bash script file.

#!/bin/bash
ACCESSION_LIST_FILE=$1
OUTPUT_DIR=$2
while read SRR_ID; do
 fastq-dump --gzip --split-files --outdir $OUTPUT_DIR $SRR_ID
done < $ACCESSION_LIST_FILE

Submit the code.

qsub -N SRA_example dl_sra.sh SRR_Acc_List.txt SRP141444

Check if your code is running:

qstat -u [username]

This will download each SRR one by one. That is slow. Let’s kill it (qdel) and make it faster.

Make your code multi-processed to run faster.

You can make it multi processing (especially when you need to use large numbers of processes) is to use multiple jobs.
Try that on your own. Make a bash script that sends a query (qsub) for each SRR accession.

Part 2.2: Version control with git

Forking a repository

On Bitbucket [https://confluence.atlassian.com/bitbucket/forking-a-repository-221449527.html] you can fork from the left menu:

[image: ../../_images/fork_atlassian.gif]
 [https://confluence.atlassian.com/bitbucket/forking-a-repository-221449527.html]On GitHub [https://help.github.com/articles/fork-a-repo/] on the top left you can find the fork button.

[image: ../../_images/fork_github.png]
 [https://guides.github.com/activities/forking/]You will be divided into groups. One person from each team forks the repository.

	Login to BitBucket Fork the repository REU_workshop2_git [https://bitbucket.org/dmarcbriers/bub_workshop07_git/src/master].

	Go to your copy of the repository.

	Click on Send invitation and then Manage this repository on bitbucket or Settings and Collaborators on github.

	Add your team member/members and give them Admin access.

Each team member will clone the repository on their own computer or SCC.

Editing from the server

Go to your repository, and find your repository.
Go to Source, and open the Readme file.
Click Edit to make changes to the Readme, and write your name.
Click the Commit button to save your changes.

Running the code

Read the Readme file. You will need to have Python3 and all the required modules installed.
If you don’t already have a conda environment, use:

module load anaconda2
conda create --name [env_name] python=3.6.2
source activate [env_name]

We are going to use Python3, so make sure you create an environment accordingly.
You can check your Python version using:

python -V

We will need to install some modules in order to run the code.

install the required libraries
conda install scikit-learn
conda install matplotlib
pip install textblob
python -m textblob.download_corpora

You can run the code now and play around.

python src/digit_recognition_game.py
python src/predict_sentiment.py

Untracked directory

When you run the code, a log file called human_vs_machine.cvs is made, which stores information for each run. You do not want the content of your runs to be uploaded to the repository. To do so, you can make a .gitignore file in the data folder.

vim .gitignore
ls -a data

Make some changes on digit_recognition_game.py

src/digit_recognition_game.py : runs a small code to learn handwritten digits from low resolution pictures. Then it will compete with you to see who can do better!!!
You will make the following changes to improve the code:

Start by entering your own name in line 2 of the src/digit_recognition_game.py file and commit your changes:

You can see which files you have changed by:

git status

and you can see the difference between the files, e.g. the lines that were changed by:

git diff

Push it to the server:

git add src/*
git commit -m "[your message]"
git push

Did some of your team members get an error message?

! [rejected] master -> master (non-fast-forward)
error: failed to push some refs to 'https://[your_username]@bitbucket.org/[owner_repository]/bub_workshop07_git.git'
To prevent you from losing history, non-fast-forward updates were rejected
Merge the remote changes before pushing again. See the 'Note about
fast-forwards' section of 'git push --help' for details.

Resolving conflicts

If you got a conflict message, try to pull the recent changes made by others.

git pull

This will try to automatically merge the changes that do not conflict.
However, if there is a conflict, you will get an error message and in the file/s the conflicts will be marked.
Such as:

<<<<<<< HEAD
aaaaaaa
=======
bbbbbb
>>>>>>> 38b76457af9eba704534f7293817653888c03fc5

If you don’t want to merge and just get rid of all the changes you have made, you can use git stash.
All your changed will be lost.

Try this on your own

Now let’s improve the code a bit.

	Change A1. Allow the user to choose the learning algorithm. Currently the program supports Support VEctor Machines (SVM), Naive Bayes (NB), and K-nearest neighbors (KNB) classifiers. Prompt the user a number 1-3 to pick the classifier.

def set_classifier(clf='KNN'):
 """ Set the type of classifier to use"""

 # Define ML classifier algorithms we are going to test out
 if classifier == "SVM":
 classifier = svm.SVC(kernel="linear") #support vector machine()
 elif classifier == "KNN":
 classifier = neighbors.KNeighborsClassifier(9) #K Nearest-Neighbors
 elif classifier == "NB":
 classifier = naive_bayes.GaussianNB() #Naive Bayes
 else:
 classifier = neighbors.KNeighborsClassifier(9) #K Nearest-Neighbors

 return classifier

	Change A2. check that the user enters a digit between 0 to 9. If the input is not a one digit number, warn the user and prompt for another number.

def get_human_prediction():
 """
 Function: Prompts the user for the number they are guessing.
 Returns: (int) number user guessed
 """
 human_prediction = None
 while human_prediction == None:
 try:
 human_prediction = input("Type the number your saw: ")
 human_prediction = int(human_prediction)
 except: #except all errors and reset the variable so the user can be prompted again
 human_prediction = None
 return human_prediction

	Change A3. As you can see the image of the figure opens in a large size. Can you change this so it opens in a smaller size?

fig, ax = plt.subplots(figsize=(3, 3))

Try to push and resolve your conflicts again.

Revert changes (undoing the commit)

git reset HEAD

You can do a --soft or a --hard reset.
Oh no, did all your changes disappear?
We can move back and forward with git.
Get the ID of any commit and you can time travel.

git reset d656972

Branching and merging

You can make branches to work separately on different functionalities of a tools.
This is useful for big teams of developers where each one works on a different module.
This is how you make a branch:

make a branch for your team
git branch [your_branch]
git checkout [your_branch]

Or you could make a branch and checkout at the same time.

git checkout -b [your_branch]

See what branch you are on:

git branch

You have your own local copy on a separate branch.

Make some changes on predict_sentiment.py

src/predict_sentiment.py runs a small code to learn the sentiment (positive or negative) of a sentence from a set of training sentences and tests on a another set. Make the following changes:

	Change B1. The train and test sentences are currently hardcoded in the code. Save them into two text files train.txt and test.txt file and make the program read the data from the disk.

def load_data_from_csv(filename):
"""
Load data from a 2 column CSV file
The data should have the a sentence in column 1
and the sentiment "positive" or "negative" in column 2
"""
f = open(filename,'r',encoding='latin-1')
data = []
for line in f:
 line = line.strip()
 sentence, sentiment = line.split(',')
 data.append((sentence,sentiment))
return data

	Change B2. After learning the sentiments, make the program prompt sentences from the user and guess the sentiment.

input_sentence = input("Type a new sentence: ")
new_sentence = TextBlob(input_sentence,classifier=cl)
print ("New sentence: %s" % new_sentence)
print ("Predicted Connotation: %s" % new_sentence.classify())

Push your changes on your own branch.
There should be no conflicts.

Merge the branch into master

git checkout master
git merge [your_branch]

Hopefully you won’t have conflicts. If you do, you know how to solve it.

Pull requests

You can inform other’s of you magnificent changes and accomplishments by making pull requests.
This way you let everyone know that you made some changes and they need to pull.

Go to the repository, from the left side menu click on Pull requests.
Create a new pull request.
Note: It is better to send pull requests on branches, the changes you have been making.

 Workshop 3: Python

Workshop 3: Python

Python
This workshop will serve as an introduction to Python. The workshop breaks into
two sections: a brief overview of Python as a programming language (with quick
examples and explanations of common functionality), and a problem-based workshop
where students will create a python script to perform protein synthesis
in silico. The introduction should be performed before the in-person
workshop. The workshop should be done in pairs, with both students alternating
who “drives”.

	Python Introduction

	Protein Synthesis Workshop

Sections

	Python 3
	Getting Started

	Basic Python Variables and Operations

	If, Else, and Elif Statements

	Iteration and Looping
	For loops

	Nested For Loops

	While Loops

	Nested While Loops

	Functions

	Scope

	File Input and Output.

	Importing Modules

	Conclusion

	Protein Synthesis Workshop
	Instructor: Dakota Hawkins

	Read FASTA Files:

	Write FASTA Files:

	Read codon_table.csv:

	Transcribe DNA to RNA:

	Translate RNA to Protein:

	Tie the Steps Together:

 Python 3

Python 3

Welcome to this supa-quick, supa-dope Python 3 tutorial. Python is a
general purpose programming language created in the early 1990s by Guido
van Rossum. Today, Python is one of the most popular languages and
enjoys particular success in statistics/data science and scientific
computing. This tutorial will serve as a brief introduction to the
capabilities of Python and its syntax.

Getting Started

To get started we will likely need to install Python. While there are
many ways to install Python on your system, I recommend using the
Anaconda Distribution (https://www.continuum.io/downloads). Anaconda is
a cross-platform (OSX, Linux, Windows) distribution manager that
simplifies installing and managing packages. While this tutorial only
makes use of the base Python packages, installing via Anaconda will also
install several scientific libraries that you will likely find useful
later. Further, Jupyter is also included in the Anaconda install, giving
you access to Jupyter Notebooks.

Interacting with Python

Once Python is installed on our system, there are two main ways we can
interact with Python: 1) opening a python interpreter using the
terminal, 2) creating a python script file.

Accessing a Python Interpreter

To access a Python Interpreter simply open a terminal window, and type
‘python’. This will create an interactive Python session where we
can write and test Python code. If you are on a Windows machine, instead
of the normal command prompt, barring specific installation steps, you
will need to open an Anaconda Prompt. This is a special terminal that
will give you access to your Python/Anaconda installation.

Writing a Python Script

A python script is a file with the ‘.py’ extension and can be written
using your favorite text editor or IDE. If you have Anaconda installed
on your computer, you will have access to the Sypder IDE, which is a
popular and useful IDE for writing scripts in Python. A python file can
be run by typing ‘python *script_name*.py’ into the terminal.

Basic Python Variables and Operations

Mathematical Operators

Unsurprisingly, Python can do math! The basic mathematic operators are
+, -, *, and \ for addition, subtraction,
multiplication, and division

The print function takes a value or expression and displays the output to the screen.
The hash symbol denotes the proceeding text as a comment, and thus is not evaluated
by the interpreter.

print(2 + 2)
print(2 - 2)
print(2*2)
print(2/2)

4
0
4
1.0

Negative values are demonstrated with a '-'
print(-3 + 2)

-1

Exponents use the double star operator '**'
print(2**3)

8

The percent symbol, '%', is used as the modulo operator for calculating remainders.
print(6 % 4) # 6 = 4*1 + 2

2

Mathematical expressions follow the order of operations.
print((2+3)*(-1)**2/2)

2.5

Mathematical Variables

There are two basic numerical data types in Python: integers and
floating point numbers. Integers are whole number, signed or unsigned,
while floating point numbers contain decimal values.

The data type of a value can be determined using the 'type()' function.
print(type(2))
print(type(2.0))

<class 'int'>
<class 'float'>

Values in Python can be assigned to variables with different names for later access.
Variable assignment is done using the '=' symbol.
x = 2
y = 3.0
print(x)
print(y)
print(y*x)

2
3.0
6.0

Variables can be cast to compatible data types using the desired data type function.
print(y)
print(type(y))

z = int(y)
print(z)
print(type(z))

3.0
<class 'float'>
3
<class 'int'>

While we instantiated 'z' using 'y' and then modified 'z', the value 'y' remains unchanged.
print(y)

3.0

Boolean Values and Operations

Boolean values are values that determine the truth value of a specific
statement. In Python, these take the form the key words, True and
False. There are several useful operators such as <, >,
<=, >=, and == for excessing relationships between numerical
values. Each of these operators returns a boolean value representing the
truth value of the given statement. All the previously listed operators
expect to be sandwiched between two values, one to the left and one to
the left, and are evaluated left to right.

The less than operator '<'
x = 3
y = 6
z = 10
print(x < 5)
The greater than operator '>'
print(z > x)
the less than or equal to operator '<='
print(x <= 5)
print(x <= 3)
the greater than or equal to operator '>='
print(x >= 5)
print(x >= 3)
the equality operator '=='
print(y == 6)
print(y == 7)

True
True
True
True
False
True
True
False

Boolean statements (e.g. 3 < 5) can be strung together using and
maniuplated using the and, or, and not keywords. All
keywords follow their formal logic definitions: the and keyword is
true is both statements are also true, the or keyword is true if one
of the statements is true, and not negates the original truth value.

print(y > x and y < z)
print(y < x or y < z)
print(not y > x)

True
True
False

String Variables and Operations

Strings are data types used to represent text data. They can be
instantiated by placing expressions between single (‘[expression]’)
or double (“[expression]”) quotes.

string_1 = 'dog'
string_2 = "cat"
print(string_1)
print(string_2)

dog
cat

strings can be concatenated using the '+' operator
string_3 = string_2 + string_1
print("What do you mean you've never seen a " + string_3 + "?!")

What do you mean you've never seen a catdog?!

String Substitution

Values can be substituted into a string using string substitution. This
is done using the .format() method available to string objects.

the second single or double quote mark can be escaped using a backslash: \
statement = 'What do you mean you\'ve never seen a {0}?!'
print(statement.format(string_3))

What do you mean you've never seen a catdog?!

strings be evaluated using boolean operators
print(string_1 == string_2) # are they the same string?
print(string_1 < string_2) # is string_1 shorter than string_2?
print(string_3 > string_2) # is string_3 longer than string_2?

strings are case sensitive
print('cat' == 'Cat')

False
False
True
False

String case can be changed using the .upper() and .lower() string methods.

print(string_2.upper())
print(string_2.upper() == 'CAT')
print(string_2 == 'CAT'.lower())

CAT
True
True

The length of a string can be accessed using the built-in len() function.
print("The string '{0}' is {1} characters long.".format(string_1, len(string_1)))

The string 'dog' is 3 characters long.

Characters in a string can be assessed by position.
Python indexing starts at 0.

print("The first character in '{0}' is: {1}.".format(string_1, string_1[0]))

Due to zero indexing, the last element is the n - 1 element.
print("The last character in '{0}' is: {1}.".format(string_1, string_1[len(string_1) - 1]))

Negative indexing also works (e.g. -1 accesses the last element):
print("The second to last character in '{0}' is: {1}.".format(string_1, string_1[-2]))

The first character in 'dog' is: d.
The last character in 'dog' is: g.
The second to last character in 'dog' is: o.

If a string is of a numerical value, the string can be converted to an integer or float.

float_string = '2.5'
int_string = '2'
print_msg = 'Converted {0} to {1} from type {2} to type {3}'

int_num = int(int_string)
print(print_msg.format(int_string, int_num, type(int_string), type(int_num)))

float_num = float(float_string)
print(print_msg.format(float_string, float_num, type(float_string), type(float_num)))

Likewise, numbers can easily be converted to strings
num = 3.5
print(print_msg.format(num, str(num), type(num), type(str(num))))

It is important to note that if a string represents a floating point number,
Python is unable to convert that number to an integer.

Converted 2 to 2 from type <class 'str'> to type <class 'int'>
Converted 2.5 to 2.5 from type <class 'str'> to type <class 'float'>
Converted 3.5 to 3.5 from type <class 'float'> to type <class 'str'>

Container Variables and Operations

There are three main container data structures in base Python: lists,
sets, and dictionaries.

Lists

Lists are arbitrarily long collections of objects. The are instantiated
by placing comma-separated values within square bracks [** **].

my_list = [1, 2, 3, 4]
print(my_list)

[1, 2, 3, 4]

Like strings, elements within lists can be accessed via their position.
print('The first element of my_list is {0}'.format(my_list[0]))

The first element of my_list is 1

Access and assign list value by accessing an indexed element,
and assigning it to a new value.
new_list = [1, 2, 3]
print(new_list)
new_list[2] = 5
print(new_list)

[1, 2, 3]
[1, 2, 5]

A range of objects within a list can be select using ':'
print(my_list[1:3])

Another ':' can be used to define step size for the selection range.
print(my_list[1:4:2])

[2, 3]
[2, 4]

element membership within a list can be tested using the 'in' keyword.

print(5 in my_list)
print(3 in my_list)

False
True

The length of a list is also assessed using the len() function.
print(len(my_list))

4

An empty list can be constructed using empty square brackets
x = []
print(len(x))
print(x)

0
[]

Elements can added onto the end of a list using the .append() list method.

x.append('Hi')
print(x)

['Hi']

Lists can have mixed-type variables (e.g. a list can contain both integers and strings)
my_list.append('String!')
print(my_list)

[1, 2, 3, 4, 'String!']

incremental lists up to a defined number can be created using the built-in range() function.
The range function outputs a 'range' object. However, it can be casted to a list
using the list() function.

n = 10
Create list of length 10 ranging from 0 - 9
range_list = list(range(n))
print(range_list)

The list doesn't need to start at 0
m = 3
print(list(range(m, n)))

Likewise, we can specify our own step size
step = 2
print(list(range(m, n, step)))

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
[3, 4, 5, 6, 7, 8, 9]
[3, 5, 7, 9]

Lists can be concatenated using the '+' operator
string_list = ['I', 'Love', 'Dogs']
print(my_list + string_list)

[1, 2, 3, 4, 'String!', 'I', 'Love', 'Dogs']

Sets

Sets are container objects that can only contain unique elements. If you
are familiar with Set Theory in Mathematics, Python sets are simply an
implementation of such a structure. Sets are constructed passing a list
to the ‘set()’ function or constructing via { }.

Sets can only contain unique elements.
set_1 = set([1, 1, 2, 2, 3, 4, 5])
print(set_1)

set_2 = {3, 4, 6, 7, 7, 8 , 9, 10}
print(set_2)

{1, 2, 3, 4, 5}
{3, 4, 6, 7, 8, 9, 10}

add elements to a set using the .add set method
set_1.add(6)
print(set_1)

{1, 2, 3, 4, 5, 6}

still only unique elements
set_1.add(5)
print(set_1)

{1, 2, 3, 4, 5, 6}

Remove elements using the .remove set method
set_1.remove(6)
print(set_1)

{1, 2, 3, 4, 5}

retrieve union of two sets using the .union set method
print(set_1.union(set_2))

retrieve set difference of two sets using the .difference method
print(set_2.difference(set_1))

retrieve set intersection using the .intersection method
print(set_1.intersection(set_2))

{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}
{8, 9, 10, 6, 7}
{3, 4}

Unlike lists, sets are unordered and thus don't support indexing.
print(set_1[0])

TypeError Traceback (most recent call last)

<ipython-input-37-c17aa407af1e> in <module>()
 1 # Unlike lists, sets are unordered and thus don't support indexing.
----> 2 print(set_1[0])

TypeError: 'set' object does not support indexing

Dictionaries

Dictionaries are collections with key-value pairs. They are constructed
by matching a key with an associated value. The value can then be
retrieved at a later time using the provided key. In python, keys and
values can be of arbitrary data types. Similar to sets, dictionaries are
consructed using curly brackets { }, though each entry must follow
the key:value syntax.

Construct dictionaries by separating keys and values using ':'
Separate key-value pairs using ','
my_dict = {'a': 1, 'b': 2, 'c': 3}
print(my_dict)

Look up values using keys
my_dict['a']

Create an empty list using {}
empty_dict = {}

add elements by 'indexing' by a given key and provided an associated
value as an assignment.
empty_dict['key'] = 'value'
print(empty_dict)

Retrieve keys of a dictionary using .keys() dictionary method
print(my_dict.keys())

Retrieve values of a dictionary using .values() dictionary method
print(my_dict.values())

If, Else, and Elif Statements

Sometimes when writing a program, you need to execute different code
snippets depending on the value of a specific variable. In Python, we do
this by employing the three boolean key words: if, else, and
elif

An if statement uses if the following syntax:

**if (boolean statement): **

run this code

if statements must be followed by a colon.
Likewise, the next line MUST be indented using either a tab or 4 spaces.
if True:
 print("It's true!")

x = 3
if (x < 10):
 print('{0} is less than 10'.format(x))

An else statement must follow an if statement and is executed
if the statement in the if statement is not met.
x = 11
if (x < 10):
 print('{0} is less than 10'.format(x))
else:
 print('{0} is greater than or equal to 10'.format(x))

Like an else statement, an elif statement must follow a preceding if statement.
However, like an if statement, an elif must also have its own boolean statement
that must be met in order for its snippets to be run.

if (x < 10):
 print('{0} is less than 10'.format(x))
elif (x < 15):
 print('{0} is greater than 9, but less than 15'.format(x))
else:
 print('{0} is greater than 14'.format(x))

Iteration and Looping

While programming, it is common you will want to execute a code snippet
multiple times, or execute the same line over a set of values. For this,
we use looping. There are two different types of loops we can use in
Python: for loops and while loops. For loops iterate through
a set of values; a while loop iterates until a specific condition is
met.

For loops

For loops employ the following syntax:

for each in list:

run code

The variable each is defined in the loop statement. Similarly, the
variable list can be any iterable data type: not just a list. Like
if, else, and elif statements, loop statements end with a
colon and must be followed by a new line and an indentation.

iterate through a list
my_list = [1, 'hi', 'yellow', 'pizza', 4.5]
for each in my_list:
 print(each)

use the range() function to iterate through integer values
for i in range(5):
 print(i)

Nested For Loops

We can nest loops within other loops for loop-ception. In a nested loop,
the first loop will run with the first value specified by the iterator
(e.g. i = 0) until the inner loop gone to completion (e.g. executed for
j =0 and j = 1). Once the inner loop is completed, the outer loop then
moves on to the next value, and the process is repeated.

for i in range(5):
 for j in range(2):
 print('(i={0}, j={1})'.format(i, j))

While Loops

While loops execute until a boolean statement returns False. While
loops employ the following syntax:

while boolean_statement:

execute code

count = 0
while count < 5:
 print(count)
 count += 1 # the += operator increments the value of a variable by the right value

Nested While Loops

Like for loops, while loops can also be nested; however, in order to
fully iterate through each loop, values used in the boolean statement in
the inner loop must be set in the outer loop. This ensures the value
will be reset for the next iteration in the inner loop.

count = 0
while count < 3:
 num = 5
 while num > 3:
 print('num: ' + str(num))
 num -= 1 # the -= operater decrements a variable by the right value.
 print('count: ' + str(count))
 count += 1

Functions

It often a good idea to modularize your programming. That is, break your
code into smaller parts that can be run together to complete your task.
This is often performed by declaring functions. In Python, functions
take a defined set of inputs, perform some set of operations using the
inputs, and likely outputs some value. Functions are defined using the
following syntax:

def function_name(input_1, …):

run code

Like loops and control statements, function definitions end with a colon
followed by a new line and an indentation.

def add(x, y):
 return(x + y)

print(add(1, 2))

It is common to have doc-strings, denoted by three sets of quotation marks,
after a function definition to define the use of the function.
def multiply(x, y):
 """
 Multiplies two numbers together.

 Arguments:
 x (float or int): a numeric value.
 y (float or int): a numeric value.

 Returns:
 (float or int): the product of `x` and `y`.
 """
 return(x*y)

print(multiply(3, 2))

It is possible to include optional parameters in functions.
These are defined by setting an arguments name and giving
a default value using '='

def increment(x, step=1):
 """
 Increments a value by specified value.

 Arguments:
 x (float or int): a numeric value.
 step (float, optional): a numeric value to increment `x` by.
 Default value is 1.
 Returns:
 (float or int): sum of `x` and `step`.
 """
 return(x + step)
print(increment(2))
print(increment(2, 3))

Scope

When discussing functions, it is important to also talk about the
scope of a variable. The scope of a variable is the environment in
which the variable is defined. If a variable is defined within a
function, it’s scope is local and unique to that function: the variable
cannot be accessed outside of the function. If a variable is defined
outside of a function, at the first indentation level, the scope is
global: the variable can be accessed anywhere within the Python file.

global_var = 20
def scope_function():
 """Scope example."""
 local_var = 3
 print(global_var + local_var) # global_var has global scope

local_var was defined only within scope_function(). Thus,
it does not exist outside of the function.
print(local_var)

File Input and Output.

Often when writing a program, it is necessary to read or write to a
file. Reading and writing can be done in a variety of ways and we’ll go
over the most useful here.

Reading a file

To read a file, we must first create a connection to the file. The most
basic way to do this is with the open command and utilize the
readline io method.

The open command creates a TextIOWrapper object that is used to read
lines in a file. The first argument in the file to open, while the
second argument specifies the object should be in "read-mode"

read_file = open('input_file.txt', 'r') # open the file
file_string = ""
line = read_file.readline() # read a line using the readline TextIOWrapper method.
while len(line) > 0: # read lines until no lines are left in the file.
 file_string += line
 line = read_file.readline()
print(file_string)
read_file.close() # close the connection to the file.

Using with to simplify file reading

The above method requires we create a separate file object and remember
to open and close it. This can be simplified by using the with and
as keywords:

with open('input_file.txt') as f:
 for line in f:
 print(line)

Writing Files

We write to files analagous to the way we first read a file: creating a
connection, iterating through the lines we want to write, and finally
closing the file.

write_list = ['This is a line',
 'This is also a line.',
 'In case you didn\'t know,',
 'You can have line breaks',
 'in between list elements',
 'and really any bounded element.']

f = open('output_file.txt', 'w') # the 'w' parameter specifies "write-mode"
for each in write_list:
 f.write(each)
f.close() # Look in your present working directory and you'll notice an output_file.txt file.

Importing Modules

In Python, a module is an external library that provides functionality
that extends past the built-in functionality. However, there are several
standard libraries/modules that are included in the base Python install,
such as math, sys, os and other modules. These, and any
other module, must be brought into the python environment using the
import keyword.

On a basic import, any method, data structure, or value provided by the
module must be accessed by first appending the module name to the method
(e.g. to use the sin function in the math module, we type
math.sin)

import math
find the sin of 1, 0, and pi
print(math.sin(1))
print(math.sin(0))
print(math.sin(math.pi))

It is possible to import specifc methods or sub-modules from libraries.
This is done by combining the from keyword with the import
keyword. Depending on the level of import, the syntax for accessing the
imported methods changes.

from math import cos
print(cos(math.pi)) # no `math.cos` necessary because we imported `cos` directly.

from os import path
import 'path' submodule from 'os' module to gain access to 'realpath' method.
When executing, os.path.realpath' not necessary because 'path' sub-module imported.
However, path.realpath necessary because 'realpath' is in the 'path' sub-module.
print(path.realpath('input_file.txt'))

You can re-name modules using the 'as' keyword on import
import math as m
print(m.pi)

Conclusion

This concludes our brief introduction to Python 3. This document simply
serves as a primer to first getting acquainted with the syntax and data
structures in Python. Many concepts, techniques, and capabilities were
left out. Feel free to explore more of Python’s capabilities on your own
if you so desire. Looking into external libraries such as numpy and
scipy will be incredibly beneficial for anyone looking to continue
to perform analysis in Python.

 BRITE REU Python Workshop

BRITE REU Python Workshop

Instructor: Dakota Hawkins

Overview

Protein synthesis generally follows what has been termed “The Central
Dogma of Molecular Biology.” That is that DNA codes RNA where RNA then
makes protein. Here is a useful source if you need a quick refresher
(https://www.nature.com/scitable/topicpage/translation-dna-to-mrna-to-protein-393).
In today’s workshop we will be writing a small Python script to simulate
this process by reading a DNA sequence from a FASTA file, transcribing
the sequence to mRNA, translating the computed mRNA strand to amino
acids, and finally writing the protein sequence to another FASTA file.
This workshop is intended to synthesise the information we learned in
the Python Introduction notebook.

For this workshop you will be working with a partner in small teams. The
groups will be used as a means to facilitate discussion (e.g. “How can
we structure this function?”), while you and your partner will help each
other implement the code. Partners should choose a single computer to
write the code with. While a single person will be “driving” at a time,
both partners are expected to converse and contribute. Likewise, no one
person should be driving for the entire workshop: make sure to switch
semi-regularly to ensure each person is getting the same out of the
workshop. Please ensure each partner has a working copy of the completed
Jupyter Notebook after the workshop is complete.

This notebook includes skeleton methods for all of the different Python
functions we’ll need: ``read_fasta()``, ``write_fastsa()``,
``read_codon_table()``, ``transcribe()``, ``translate()``,
and ``main()``. While these functions should encompass all of the
functions we’ll need, feel free to write your own helper functions if
you deem it necessary. Similarly, if you’d rather eskew the structure I
provided – whether combining previously separated functions, changing
passed arguments, etc. – feel free to do so. The only requirement is
both partners are onboard with the change and the final product produces
the same output. The skeleton code is mainly used to provide a starting
structure so the code is easier to jump into.

Helpful Tips and Files

	The provided file, ‘codon_table.csv’, contains information on which
codons produce which amino acids.

	The ``re`` python module contains a ``sub`` method to perform
regular expression substitution.

	FASTA files are text files with standardized format for storing
biological sequence. Generally, the first line in FASTA files is a
description demarked by ``>`` (or less frequently ``;``) as
the first character. The next lines contain the actual biological
sequence. Generally each line is either 60 or 70 characters long
before a line break. An example FASTA file (human_notch.fasta)
has been included. For more information:
https://blast.ncbi.nlm.nih.gov/Blast.cgi?CMD=Web&PAGE_TYPE=BlastDocs&DOC_TYPE=BlastHelp

	Helpful functions

	Library

	Function

	Description

	Example Call

	base

	open()

	Access a
file in
Python

	
	``read_file =

	open(file_na

me, ‘r’)``

	base

	readline(
)

	Read the
current line
from a file
object

	read_file.r
eadline()

	base

	write()

	Write a
string to a
file

	write_file.
write("Hi the
re.")

	base

	strip()

	Remove
leading and
trailing
whitespace
and
formatting
characters

	"\n Hi ther
e ".strip(
)

	base

	split()

	Separate a
string into
disjoint
sections
given a
specified
delimiter

	"1,2,3,4".s
plit(',')

	re

	sub()

	Substitute
one given
pattern with
another

	
	``re.sub(“F”,

	“J”, “Functi

on”)``

Read FASTA Files:

def read_fasta(fasta_file):
 """
 Retrieve a DNA or protein sequence data from a FASTA file.

 Arguments:
 fasta_file (string): path to FASTA file.
 Returns:
 (string): DNA or protein sequence found in `fasta_file`.
 """
 return('')

Write FASTA Files:

def write_fasta(sequence, output_file, desc=''):
 """
 Write a DNA or protein sequence to a FASTA file.

 Arguments:
 sequence (string): sequence to write to file.
 output_file (string): path designating where to write the sequence.
 desc (string, optional): description of sequence. Default is empty.
 Returns:
 None.
 """
 return(None)

Read codon_table.csv:

def read_codon_table(codon_table='codon_table.csv'):
 """
 Create a dictionary that maps RNA codons to amino acids.

 Constructs dictionary by reading a .csv file containing codon to amino
 acid mappings.

 Arguments:
 codon_table (string, optional): path to the .csv file containing codon
 to amino acid mappings. Assumed column structure is 'Codon',
 'Amino Acid Abbreviation', 'Amino Acid Code', and 'Amino Acid Name'.
 Default is 'codon_table.csv'
 Returns:
 (dictionary, string:string): dictionary with codons as keys and amino acid codes
 as values.
 """
 return({'': ''})

Transcribe DNA to RNA:

def transcribe(dna_seq, direction='-'):
 """
 Transcribe a DNA sequence to an RNA sequence.

 Arguments:
 dna_seq (string): DNA sequence to transcribe to RNA.
 direction (string, optional): Direction of sequence. The symbol '+'
 denotes forward/template strand while '-' denotes reverse/coding strand.
 Default is '-'.
 Returns:
 (string): transcribed RNA sequence from `dna_seq`.
 """

 return('')

Translate RNA to Protein:

def translate(rna_seq, codon_to_amino):
 """
 Translate an RNA sequence to an amino acid sequence.

 Arguments:
 rna_seq (string): RNA sequence to translate to amino acid sequence.
 codon_to_amino (dict string:string): mapping of three-nuceleotide-long codons to
 amino acid codes.
 Returns:
 (string): amino acid sequence of translated `rna_seq` codons.
 """

 return('')

Tie the Steps Together:

def main(dna_seq, output_fasta):
 """
 Return the first protein synthesized by a DNA sequence.

 Arguments:
 dna_seq (string): DNA sequence to parse.
 output_fasta (string): fasta file to write translated amino acid sequence to.
 Returns:
 None.
 """

 return(None)

If You Finish Early

If you finish early, here are some suggestions to extend the
functionality of your script:

	System Arguments: Using the ``sys`` Python module it is
possible to access command-line arguments passed by a user.
Specifically, the ``sys.argv`` variable stores user-passed
information. Implement command line functionality that takes a
user-provided FASTA file, converts the DNA sequence to amino acids,
and outputs to another user-provided FASTA file.

	Defensive Programming: When you’re creating a program, usually
you have a pretty good idea of its use and how it works. However,
sometimes we’re not the only ones using our programs. Therefore, it’s
a good idea to protect against user and input error. For example,
what happens if non-recoganized letters, whitespace, or special
characters (``*``, ``-``) are included in the input sequence?
Ensure your program is able to handle these, but remember some
characters may have special meanings.

	Calculating Statistics: Higher GC content in genomic regions is
related to many important biological functions such as protein
coding. Discuss with your partner the best way to measure the GC
content of a DNA sequence. Once you’ve agreed on the best way,
implement a function that will calculate the percentage along a
provided sequence. Using the Python module ``matplotlib``, the
output of this function to visualize how the measure changes along
the sequence. In order to easily identify areas of high and low GC
content, make sure to include a line that plots the mean level
accross sequence.

	Simulating Single Nucleotide Polymorphisms: Single nucleotide
polymorphisms (SNPs) are single-point mutations that change the
nucleotide of a single base in a strand of DNA. SNPs are incredibly
important in genome-wide association studies (GWAS) that look to
infer the relationship between specific genotypes and phenotypic
outcomes such as disease status. Using a numerical library, such as
numpy/scipy, create a function to randomly select a base for
mutation. Apply some function that determines the identity of the
newly mutated base. How biologically reasonable is your model? What
biological phenomena should we consider to create an accurate
simulation?

For some exercises, you will likely need to look for, and read, library
specific documentation in order to implement the functions. This alone
is a helpful exercise, as throughout your coding career you will
continually need to reference documentation.

 Workshop 4: R and RStudio

Workshop 4: R and RStudio

R and RStudio
In this online workshop you will learn the R programming language, RStudio interface for programming in R, and useful tips for exploring and working with data.

You are expected to study the the following content:

	Introduction and Data Structures

	Exploring Data in R

In the workshop, we will work with RNA-Seq data and perform differential analysis.

	R Workshop

Tutorials

	R and RStudio: Introduction and Data Structures
	Getting Started

	Basic Operations in R

	Conditional Statements and Looping

	Exploring Data in R
	R packages and libraries

	Loading Data

	Data Exploration

	R Workshop
	Load Packages

	Import Airway Data

	Explore Airway Dataset

	Differential Expression Analysis using DESeq2

	Manipulate and Visualize Results

	R Workshop Solution
	Load Packages

	Import Airway Data

	Explore Airway Dataset

	Differential Expression Analysis using DESeq2

	Manipulate and Visualize Results

 R and RStudio: Introduction and Data Structures

R and RStudio: Introduction and Data Structures

R is a free programming language for statistical computing and graphics. It is an implementation of the S programming language and was created by Ross Ihaka and Robert Gentleman at the Univeristy of Auckland, New Zealand. R is currently developed by the R Development Core Team. RStudio is an Integrated Development Environment (IDE) for R.

To start, download the latest versions of R and RStudio following the instructions provided here [https://programming-workshops.readthedocs.io/en/latest/workshops/00_instructions/r.html]

Getting Started

Open RStudio locally and learn how to use the RStudio interface [https://www.youtube.com/watch?v=jAgbZ8jkBtQ].

Basic Operations in R

We can use R as a calculator to do simple math operations such as addition (+), subtraction (-), multiplication (*), division (), and raise a value to a power (^). We can type these calculations in the console or run them in an R script that extension ends in .R

#We can use hashtags to make comments about our code
#Basic calculations in R
4 + 5
4 - 5
4 * 5
4/5

#Outputs of calculations
[1] 9
[1] -1
[1] 20
[1] 0.8

#Calculate exponents using ^
4^5

#Output of exponent
[1] 1024

Data Structures

R has many data structures and types that we can use, depending on the information we want to work with.

The major data types include:

	character

	numeric (real or decimal)

	integer

	logical

	double

	complex

The major data structures include:

	Scalars

	Atomic Vectors

	Factors

	Lists

	Matrices and Arrays

	Dataframes

Scalars

The simplest type of object is a scalar which is an object with one value. We can assign a value or calculations to a variable using the assignment operator “<-“.

Note: The equals sign “=” is not an assignment operator in R and has a different functionality which will be discussed further below.

To create scalar data objects x and y:

#Set x and y as values
x <- 4
y <- 5

The objects x and y were set a numeric data type.

We can manipulate these objects in R and perform different calculations together. To print the value of these variables, we can use the print() function or call the variable itself.

#Calculations with numeric variables

z <- x+y

z

print(z)

x*y/z

#Output of calculations

[1] 9

[1] 9

[1] 29

As stated above, we can also create data objects of other data types such as logical and character mode.

For logical data, we use TRUE (T) and FALSE (F)

Logical <- T

Logical

[1] TRUE

For characte data, we use single or double quotation to enclose the data

Character_Data <- "T"

Character_Data

[1] "T"

We can use available functions in R to determine the mode or type of data we are working with.

#Use mode function
mode(x)
[1] "numeric"

mode(Logical)
[1] "logical"

mode(Character_Data)
[1] "character"

#Use is.object() function
is.numeric(x)
[1] TRUE

is.logical(Logical)
[1] TRUE

is.numeric(Character_Data)
[1] FALSE

Vectors

A vector is a basic data structure in R. It is a set of scalars of the same data type.

We can create vectors in different ways.

One of the main ways is to use the function c() to concatenate multiple scalars together.

x <- c(1, 5, 4, 9, 0)

x

[1] 1 5 4 9 0

We can use function typeof() to determine the data type of a vector, and we can check the length of the vector using the funtion length() .

typeof(x)

[1] "double"

length(x)

[1] 5

If we set x to have elements of different data types, the elements will be coerced to the same type.

x <- c(1, 5, FALSE, 9, "help")

x

[1] "1" "5" "FALSE" "9" "help"

typeof(x)

[1] "character"

Instead of reassigning the elements of x using the function c(), we could reassign specific elements based on the index number.

#Reassign third and fifth elements back to original values
x

[1] "1" "5" "FALSE" "9" "help"

x[3] <- 4

x[5] <- 0

x

[1] 1 5 4 9 0

typeof(x)

[1] "double"

Other ways to creat vectors is to use other operators and functions such as “:” operator, seq() function, and rep() function.

#Create vector of consecutive numbers

y <- 1:10

y

[1] 1 2 3 4 5 6 7 8 9 10

#Create vector of a sequence of numbers
#Defining number of points in an interval or step size

seq(1, 10, by = 1)

[1] 1 2 3 4 5 6 7 8 9 10

seq(1, 10, length.out = 10)

[1] 1 2 3 4 5 6 7 8 9 10

#Create vector of the same values

rep(3, 5) # A set of 5 numbers with value set as 3

[1] 3 3 3 3 3

Factors

A factor is a special type of character vector. Factors are qualitative or categorical variables that are often used in statistical modeling. To create a factor data structure, we will first create a character vector and convert it to a factor using the factor() function.

temperature <- c("High","Medium","Low")
temperature <- factor(temperature)

Converting temperature character vector to a factor type creates “levels” based on the factor values (these are the values of categorical variables).

temperature

[1] High Medium Low
Levels: High Low Medium

Matrices and Arrays

So far we have discussed one-dimensional objects. We can create objects of multidimensional data. Matrices are data structures that contain data values in two dimensions. An array is a matrix with more than two dimensions. Matrices and arrays are used perform efficient calculations in a computationally fast and efficient manner.

To create a matrix, we can use the matrix() function, which takes as arguments a
data vector and parameters for the number of rows and columns.

We can determine the dimensions of a matrix using the dim() function.

#Create a simple 2 by 2 matrix.

mat<-matrix(c(2,6,3,8),nrow=2,ncol=2)

mat

 [,1] [,2]
[1,] 2 3
[2,] 6 8

dim(mat)

[1] 2 2

We can also choose to add row names and column names to the matrix.

#Add row names and column names

rownames(mat) <- c("a", "b")

colnames(mat) <- c("c", "d")

 c d
a 2 3
b 6 8

#Add row names and column through the matrix function

mat<-matrix(c(2,6,3,8),nrow=2,ncol=2,
 dimnames = list(
 c(a,b),
 c(c,d)
)
)

mat

 c d
a 2 3
b 6 8

We can also create a matrix by concatenating vectors together using rbind() function to concatenate by rows or cbind() function to concatenate by columns.

x <- 1:3

y <- 4:6

Combine by rows
a <- rbind(x,y)

a

 [,1] [,2] [,3]
x 1 2 3
y 4 5 6

Combined by columns
b <- cbind(x,y)

b

 x y
[1,] 1 4
[2,] 2 5
[3,] 3 6

To create an array, we can use the function array(), which takes as arguments vectors as input and uses the values in the dim parameter to create an array.

vector1 <- c(1,2,3)
vector2 <- c(5,6,7,8,9,10)

Create an array with dimension (3,3,2) that creates 2 arrays each with 3 rows and 3 columns.

array1 <- array(c(vector1,vector2),dim = c(3,3,2))

array1

, , 1

 [,1] [,2] [,3]
[1,] 1 5 8
[2,] 2 6 9
[3,] 3 7 10

, , 2

 [,1] [,2] [,3]
[1,] 1 5 8
[2,] 2 6 9
[3,] 3 7 10

Lists

Lists are data objects which contain elements of different types including numbers, strings, vectors, and other lists. A list can also contain a matrix or even a function as its elements.

#Create a list of different data types

list_data <- list(c(2,4,6,8), "Hello", matrix(c(11,12,13,14),nrow=2,ncol=2),TRUE, 62.13, FALSE)
print(list_data)

Give names to the elements in the list

names(list_data) <- c("Vector1", "Character1", "Matrix1", "Logical1", "Numeric", "Logical2")

list_data

$Vector1
[1] 2 4 6 8

$Character1
[1] "Hello"

$Matrix1
 [,1] [,2]
[1,] 11 13
[2,] 12 14

$Logical1
[1] TRUE

$Numeric
[1] 62.13

$Logical2
[1] FALSE

We can use the function str() to list the underlying structure of the data object.

str(list_data)

 List of 6
$ Vector1 : num [1:4] 2 4 6 8
$ Character1: chr "Hello"
$ Matrix1 : num [1:2, 1:2] 11 12 13 14
$ Logical1 : logi TRUE
$ Numeric : num 62.1
$ Logical2 : logi FALSE

Data Frames

A data frame is a table in which each column contains values of one variable or vector and each row contains one set of values from each column. Within each column, all data elements must be of the same data type. However, different columns can be of different data types. The data stored in a data frame can be of numeric, factor or character type. In addition, each column should contain same number of data elements.

To create a data frame, we can use the function data.frame():

#Create a data frame with employee ID, salaries, and start dates

emp.data <- data.frame(
 emp_id = c("U974","U503","U298","U545","U612"),
 salary = c(623.3,515.2,611.0,729.0,843.25),
 start_date = as.Date(c("2012-01-01", "2013-09-23", "2014-11-15", "2014-05-11",
 "2015-03-27")),
 stringsAsFactors = FALSE
)

emp.data

 emp_id salary start_date
1 U974 623.30 2012-01-01
2 U503 515.20 2013-09-23
3 U298 611.00 2014-11-15
4 U545 729.00 2014-05-11
5 U612 843.25 2015-03-27

We can use the function str() to list the underlying structure of the data object.

str(emp.data)

 'data.frame': 5 obs. of 3 variables:
$ emp_name : chr "U974" "U503" "U298" "U545" ...
$ salary : num 623 515 611 729 843
$ start_date: Date, format: "2012-01-01" "2013-09-23" ...

We can extract data from the data frame and also add data to the data frame.

#Extract salary information
emp.data$salary

[1] 623.30 515.20 611.00 729.00 843.25

#Add column vector
emp.data$dept <- c("IT","Operations","IT","HR","Finance")

 emp_id salary start_date dept
1 U974 623.30 2012-01-01 IT
2 U503 515.20 2013-09-23 Operations
3 U298 611.00 2014-11-15 IT
4 U545 729.00 2014-05-11 HR
5 U612 843.25 2015-03-27 Finance

More Examples of Data Structures and Types

To learn more about data types and structures and see more examples, watch these available videos below.
Part 1 [https://www.youtube.com/watch?v=B2f9tSGVn7w]
Part 2 [https://www.youtube.com/watch?v=_HKDbA9WkX8]

Conditional Statements and Looping

Logical and relational operators

Logical and relational operators can be used to execute code based on certain conditions. Common operators include:

[image: ../../_images/Logical_Operators.png]

If statements

q <- 3
t<-5

#if else conditional statement

if(q<t){

 w<-q+t

 } else

 w<-q-t

 w

[1] 8

a<-2
b<-3
c<-4
#Using and to test two conditions, both true

if(a<b & b<c) x<-a+b+c

 x
[1] 9

Looping

We can use looping to efficiently repeat code without having to write the same code over and over.

The while loop repeats a condition while the expression in parenthesis holds true and takes the form:

while (condition controlling flow is true)
 perform task

x<-0
while(x<=5){x<-x+1}

x
[1] 6

For loops are used to iterate through a process a specified number of times. A
counter variable such as “i” is used to count the number of times the loop is executed:

for (i in start:finish)
 execute task

An example is to add values 1 to 10 to vector y using a for loop.

#Create empty vector
y<-vector(mode="numeric")

#Loop through 1 to 10 to add values to y
for(i in 1:10){
 y[i]<-i
 }

y

[1] 1 2 3 4 5 6 7 8 9 10

To learn more about if statements and logical operators, check out this video [https://www.youtube.com/watch?v=eVEx_pBEkRI]

Alternatives to using looping and conditional statements include using the apply function in R. A quick introduction to apply function is provided here [https://www.youtube.com/watch?v=csLati8vpOo].

 Exploring Data in R

Exploring Data in R

In this section we will go into more detail as to how to import and explore data through different packages,functions, and graphics.

R packages and libraries

R packages are collections of functions and data sets developed by the R community. The main repository used in R is CRAN which has over 10,000 packages published and more that are publicly available.

To install most packages, the function install.packages(“package_name”) can be used.

There are other repositories such as Bioconductor that are used in Bioinformatics and other fields.

To learn how to install packages, read a quick description about package installation [https://www.tutorialspoint.com/r/r_packages.htm] and watch a tutorial here [https://www.youtube.com/watch?v=0cCuHhfphtQ].

Loading Data

Importing downloaded data

Based on the data object, there are different functions available to import datasets into R. A cheatsheet from RStudio community is provided below with useful functions to load in data.

[image: ../../_images/Import_Cheatsheet.png]
An alternative way to import downloaded data is to also click on “Import Dataset” on the upper right hand side under Environment.

[image: ../../_images/RStudio_Console.png]
In addition, datasets that are available online can be imported into R using their url.

For example

#install and load data.table library
install.packages("data.table")
library(data.table)

#Use fread function to download data set under the variable mydat
mydat <- fread('http://www.stats.ox.ac.uk/pub/datasets/csb/ch11b.dat')

head(mydat)

 V1 V2 V3 V4 V5
1: 1 307 930 36.58 0
2: 2 307 940 36.73 0
3: 3 307 950 36.93 0
4: 4 307 1000 37.15 0
5: 5 307 1010 37.23 0
6: 6 307 1020 37.24 0

Available data sets in R

R has many available datasets that can be loaded using the function data().
Typing data() in the console provides a list of datasets and their descriptions.

[image: ../../_images/Dataset.png]
We can load these data sets with the function load().
To look at the first few lines of the data set, we can use the function head(). To see the last few lines of the data set, we can use the function tail().

[image: ../../_images/Load_Dataset.png]

Saving Data Object and Files

We can save objects using the save() function.

For example, if we loaded the mtcars dataset from data() function in R, we can then save mtcars object by specifying the object (mtcars) and the file path with an .RData extension. Note, we can save more than one data object in a .RData file.

#load mtcars data set
data("mtcars")

#View mtcars dataset
head(mtcars)

 mpg cyl disp hp drat wt qsec vs am gear carb
Mazda RX4 21.0 6 160 110 3.90 2.620 16.46 0 1 4 4
Mazda RX4 Wag 21.0 6 160 110 3.90 2.875 17.02 0 1 4 4
Datsun 710 22.8 4 108 93 3.85 2.320 18.61 1 1 4 1
Hornet 4 Drive 21.4 6 258 110 3.08 3.215 19.44 1 0 3 1
Hornet Sportabout 18.7 8 360 175 3.15 3.440 17.02 0 0 3 2
Valiant 18.1 6 225 105 2.76 3.460 20.22 1 0 3 1

#save mtcars in .RData extension
save(mtcars, file = "mtcars.RData")

To load this file into R, we can use the load() function.

load(file = "mtcars.RData")

Another way to save one data object is to save it using a .RDS extension. To save and load a .RDS extension, we can use saveRDS() function and readRDS() function.

#save mtcars to a .RDS file
saveRDS(mtcars, file = "mtcars.rds")

#read in .RDS file and save under mtcars variable name
mtcars <- readRDS(file = "mtcars.rds")

To write an R object or variable to a file, we can use existing functions to write mtcars to a csv file and txt file.

write.csv(mtcars, file = "mtcars.csv")

write.table(mtcars, file = "mtcars.txt", sep="")

Data Exploration

Common functions used to initially explore data include functions for mean and standard deviation. In addition, we can use the summary() function to give us some descriptive statistics about a data set.

[image: ../../_images/Data_Exploration.png]

Manipulating Data

We can use packages to reshape or clean our data prior to analysis. Two main packages that are used are tidyr and reshape2.

To learn more about how to use these package to tidy and reshape data, read this page [http://www.milanor.net/blog/reshape-data-r-tidyr-vs-reshape2/]. In addition, an example of using reshape2 on a cancer data set is shown here [https://www.youtube.com/watch?v=aXXy04P_l1c].

Plotting and visualizations in R

R supports a variety of graphics in the base package, and numerous other packages provide additional graphics.

For example, we can use a simple plot() function to plot specific variables of the mtcars data set.

plot(mtcars$wt, mtcars$mpg)

[image: ../../_images/Plot_Example.png]
Other plot functions include:

[image: ../../_images/Plot_Functions.png]
Graphical parameters can be added to these plots including:

[image: ../../_images/Graphical_Parameters.png]
Many plot functions also include graphical parameter arguments.

For example, we can add a title and axis labels and change the point size using arguments in the plot function.

plot(mtcars$wt, mtcars$mpg, main="Scatterplot", xlab="Car Weight ", ylab="Miles Per Gallon ", pch=19)

[image: ../../_images/Plot_Parameters.png]
An alternative way to generate plots is to use ggplot2 package.

install.packages("ggplot2")
library(ggplot2)

p <- ggplot(mtcars, aes(wt, mpg))
p + geom_point(size=2) + xlab("Car Weight") + ylab("Miles Per Gallon")

[image: ../../_images/ggplot2_example.png]
With ggplot2, we can add other features and variables to our plot.

p <- ggplot(mtcars, aes(wt, mpg))
geom_point(aes(colour=factor(cyl), size = qsec)) + xlab("Car Weight") + ylab("Miles Per Gallon")

[image: ../../_images/ggplot2_variable.png]
To learn more advanced uses of ggplot2, look at this more detailed step by step tutorial [https://tutorials.iq.harvard.edu/R/Rgraphics/Rgraphics.html].

 R Workshop: RNA-seq Airway Data and Differential Expression Analysis

R Workshop: RNA-seq Airway Data and Differential Expression Analysis

In this workshop, we will focus on learning how to load packages, import data, perform exploratory analysis with built in functions as well as functions from packages installed, performing differential expression analysis of RNA-seq data with the DESeq2 package, and visualizing the results using ggplot2.

We will work in R Markdown, a .Rmd file written in markdown and contains chunks of embedded R code.

The R Mardown file and two csv files containing count data (airway_scaledcounts.csv) and meta data file (airway_metadata.csv) are in the R_workshop folder which you can download here [https://drive.google.com/open?id=1qqoupV8tYrKt0Zptzf3ooo7Um7hANcFb].

Load Packages

We will begin by loading the necessary packages:

Go ahead and install these packages using install.packages():

	readr

	ggplot2

	dplyr

	magrittr

We will use packages from the bioconductor repository, which provides tools for analysis of high-throughput genomic data.

source(“https://bioconductor.org/biocLite.R”)

Use bioclite(“package_name”) function to install packages SummarizedExperiment, DESeq2 and airway.

Note: If package base is not already installed, please install that as well.

packages <- c("readr", "ggplot2", "dplyr", "magrittr")
install.packages(packages, dependencies = TRUE)

source("https://bioconductor.org/biocLite.R")
biocLite("SummarizedExperiment", dependencies = TRUE)
biocLite("DESeq2", dependencies = TRUE)
biocLite("airway", dependencies = TRUE)

Load these libraries using library(“package_name”) function:

#library(base) in case it's not loaded
library(readr)
library(dplyr)
library(ggplot2)
library(magrittr)
library(SummarizedExperiment)
library(DESeq2)
library(airway)

Import Airway Data

If you have not downloaded the R_Workshop folder already, please do that now.

Let’s begin first by setting our working directory. Set your working directory to where the R_Workshop folder is located on your computer.

#Find working directory
getwd()

#Set working directory path
setwd("/Users/tanyatk/Desktop/R_Workshop/")

#Check working directory again
getwd()

Today we will work with the airway dataset. This data set comes from an RNA-Seq experiment, a high throughput sequencing method, on four human airway smooth muscle cell lines treated and untreated with dexamethasone. We will work with read counts or expression matrix for this dataset (i.e. processed files).

Note: The sequencing files of this experiment are available on the GEO database with GEO Series Number GSE52778, and can be downloaded using SRA toolkit.

Use the read_csv(“file”) function from package readr to import the airway_scalecounts.csv (count data) and airway_metadata.csv (meta data) files from the downloaded folder R_Workshop.

#User read_csv() function to import airway_scaledcounts.csv and airway_metadata.csv files into R

Use base functions to describe and look at the airway data: scaledcounts and metadata.

	dim() - Dimensions

	head() - Print first lines of data

	tail() - Print last few lines of data

	str() - Describe data object structure and information

#Use base functions to gain an initial view of the data

This data set is also available in a package called “airway” in bioconductor. It is saved as an S4 object (object oriented programming) that contains the count data, meta data, and other information important to the data in fields or slots in the object. To load the airway data we can use the data(“data_name”) function and call airway to add the dataset to our workspace.

You’ll notice that the class is called RangedSummarizedExperiment (i.e. an S4 object), which is used to store matrices of experimental results such as the count data and meta data. This class is from the SummarizedExperiment package which is used often to store sequencing and microarray data.

#call airway data using data() and print airway data to save to workspace

Since we imported the same data set twice, we can remove data from our workspace using the rm() function.

Let’s remove the variables scaledcounts and metadata from our workspace. We’ll keep the airway object since it will be easier to work with for downstream analysis.

#remove scaledcounts and metadata variable

Explore Airway Dataset

Let’s first do some preliminary work with the airway dataset. The sample/metadata information is saved under the slot colData which can be extracted using airway@colData or colData(airway).

First check the data structure of the colData(airway) dataset.

Hint: Built in functions to check data structure

Let’s set colData(airway) as a data frame.

Hint: We will use the as.data.frame() function to do this.

#Check mode of colData(airway) and make change the structure to a data frame.

The count data is saved under the slot assay. We can extract the count matrix by calling airway@assay or assay(airway). We can also use descriptive statistics to look at the expression acrosss samples. We will sum the expression of each column and scale by 1e6 to get scaled expression value. We will then use the summary() function to look at the range of expression between the samples.

Determine a way to sum the expression of each column.

Hint: You can use a for loop, apply function, or base functions such as colSums()

#Sum the expression of each column, divide by 1e6
#Use summary function to see the range of values between each sample

Differential Expression Analysis using DESeq2

We will use DESeq2 package for differential expression analysis of the airway data set to find differentially expressed genes between untreated and treated samples. We will first load DESeq2 and set up the data to be compatible with DESeq by using the function DESeqDataSet().

We can use the help(“function_name”) or ?function_name to look up the function to get a description.

A description or help pages will show up under the Help tab in the bottom right corner.

#Look up DESeqDataSet() function description

We can also go to the bioconductor page for DESeq2 and look at the manual for functions as well as a tutorial of using the package itself. Click here to see the page [https://bioconductor.org/packages/release/bioc/html/DESeq2.html].

The function DESeqDataSet includes an argument called design which asks for a formula that expresses how the counts for each gene depends on the variables in colData. In this case we choose variables cell and dex because we care about the cell line and which samples are treated with dexamethasone versus which samples are untreated controls.

DE_airway <- DESeqDataSet(airway, design = ~ cell + dex)

DE_airway

Before we continue, we must set our control group as our reference level for comparison in our differential expression analysis.

DE_airway@colData$dex <- relevel(DE_airway@colData$dex, ref = "untrt")

Now we wil run the differential expression analysis steps through the function DESeq(). Again we can look up the function to learn more about what it does and the arguments needed to run it. We use the results() function to generate a results table with log2 fold changes, p values and adjusted p values for each gene. The log2 fold change and the Wald test p value is based on the last variable in the design formula, in this case variable dex. Therefore our results will show which genes are differentially expressed between the untreated and treated groups.

help("DESeq")

DE_airway <- DESeq(DE_airway)
res <- results(DE_airway)

res

How do we order the results table (res) based on the p-value?
There are already available functions in R that we can use to sort the dataframe.
Hint: Use function order() to order the rows based on p-value

#Use order() to order the results table based on the p-value

In DESeq2, the function plotMA generates an MA Plot commonly used to visualize the differential expression results. The plot shows the log2 fold changes attributable to a given variable over the mean of normalized counts for all the samples in the DESeqDataSet. Points represent genes and will be colored red if the adjusted p value is less than 0.1. Points which fall out of the window are plotted as open triangles pointing either up or down.

plotMA(res, ylim=c(-2,2))

Manipulate and Visualize Results

Let’s add a column that tell us whether each gene is significant. Using the mutate() function from library dplyr, we can add a column showing whether the significance is TRUE or FALSE based on cutoff padj < 0.01.

#change res to a tibble format to work with dplyr

res <- tbl_df(res)

#add sig column to show which genes are significant or not by using mutate() from dplyr

res <- mutate(res, sig=padj<0.01)

We can use the symbol %>% from library magrittr to represent a pipe. Pipes take the output from one function and feed it to the first argument of the next function. You may have seen something similar in unix with |

res <- res %>% mutate(sig=padj<0.01)

head(res)

Let’s use the filter() function from dplyr to filter out results based on padj < 0.01, and write this to a csv file using write_csv() function from readr.

Try using piping format %>% to do this!

Filter res based on cutoff padj < 0.01 and save this result into a csv file called significant_results.csv

What if we want to generate our own plots? We can use ggplot2 to create our own volcano plot of the differential expression results between the untreated and treated groups.

Now let’s try generating a volcano plot using ggplot2?

Hint: log2FoldChange for x-axis, -1*log10(pvalue) for y-axis, sig to color the points.

Make sure to include argument for points and include the title “Volcano plot”

Bonus: Change the axis titles to something more readable and change the point shapes, or play around with any other parameters to get a feel for how ggplot2 works.

#Create Volcano plot using ggplot2

How would you generate the same MA plot above using ggplot2?
Hint: Use baseMean for x-axis, log2FoldChange for y-axis, sig for color.

Make sure to have points and to use a log10 scale for the x-axis (i.e. scale_x_log10()).

Add the title “MA plot” to your plot as well.

#Create MA plot using ggplot2

We can look at our session information including the packages we loaded and worked with.

sessionInfo()

 R Workshop: RNA-seq Airway Data and Differential Expression Analysis

R Workshop: RNA-seq Airway Data and Differential Expression Analysis

In this workshop, we will focus on learning how to load packages, import data, perform exploratory analysis with built in functions as well as functions from packages installed, performing differential expression analysis of RNA-seq data with the DESeq2 package, and visualizing the results using ggplot2.

We will work in R Markdown, a .Rmd file written in markdown and contains chunks of embedded R code.

The R Mardown file and two csv files containing count data (airway_scaledcounts.csv) and meta data file (airway_metadata.csv) are in the R_workshop folder which you can download here [https://drive.google.com/open?id=1qqoupV8tYrKt0Zptzf3ooo7Um7hANcFb].

Load Packages

We will begin by loading the necessary packages:

Go ahead and install these packages using install.packages():

	readr

	ggplot2

	dplyr

	magrittr

We will use packages from the bioconductor repository, which provides tools for analysis of high-throughput genomic data.

source(“https://bioconductor.org/biocLite.R”)

Use bioclite(“package_name”) function to install packages SummarizedExperiment, DESeq2 and airway.

Note: If package base is not already installed, please install that as well.

packages <- c("readr", "ggplot2", "dplyr", "magrittr")
install.packages(packages, dependencies = TRUE)

source("https://bioconductor.org/biocLite.R")
biocLite("SummarizedExperiment", dependencies = TRUE)
biocLite("DESeq2", dependencies = TRUE)
biocLite("airway", dependencies = TRUE)

Load these libraries using library(“package_name”) function:

#library(base) in case it's not loaded
library(readr)
library(dplyr)
library(ggplot2)
library(magrittr)
library(SummarizedExperiment)
library(DESeq2)
library(airway)

Import Airway Data

If you have not downloaded the R_Workshop folder already, please do that now.

Let’s begin first by setting our working directory. Set your working directory to where the R_Workshop folder is located on your computer.

#Find working directory
getwd()

#Set working directory path
setwd("/Users/tanyatk/Desktop/R_Workshop/")

#Check working directory again
getwd()

Today we will work with the airway dataset. This data set comes from an RNA-Seq experiment, a high throughput sequencing method, on four human airway smooth muscle cell lines treated and untreated with dexamethasone. We will work with read counts or expression matrix for this dataset (i.e. processed files).

Note: The sequencing files of this experiment are available on the GEO database with GEO Series Number GSE52778, and can be downloaded using SRA toolkit.

Use the read_csv(“file”) function from package readr to import the airway_scalecounts.csv (count data) and airway_metadata.csv (meta data) files from the downloaded folder R_Workshop.

#User read_csv() function to import airway_scaledcounts.csv and airway_metadata.csv files into R

scaledcounts <- read_csv("airway_scaledcounts.csv")
metadata <- read_csv("airway_metadata.csv")

Use base functions to describe and look at the airway data: scaledcounts and metadata.

	dim() - Dimensions

	head() - Print first lines of data

	tail() - Print last few lines of data

	str() - Describe data object structure and information

#Use base functions to gain an initial view of the data

#Look at scaledcounts variable
dim(scaledcounts)

head(scaledcounts)

tail(scaledcounts)

str(scaledcounts)

#Look at metadata variable
dim(metadata)

head(metadata)

tail(metadata)

str(metadata)

This data set is also available in a package called “airway” in bioconductor. It is saved as an S4 object (object oriented programming) that contains the count data, meta data, and other information important to the data in fields or slots in the object. To load the airway data we can use the data(“data_name”) function and call airway to add the dataset to our workspace.

You’ll notice that the class is called RangedSummarizedExperiment (i.e. an S4 object), which is used to store matrices of experimental results such as the count data and meta data. This class is from the SummarizedExperiment package which is used often to store sequencing and microarray data.

#call airway data using data() and print airway data to save to workspace

data("airway")
airway

Since we imported the same data set twice, we can remove data from our workspace using the rm() function.

Let’s remove the variables scaledcounts and metadata from our workspace. We’ll keep the airway object since it will be easier to work with for downstream analysis.

#remove scaledcounts and metadata variable
rm(scaledcounts)

rm(metadata)

Explore Airway Dataset

Let’s first do some preliminary work with the airway dataset. The sample/metadata information is saved under the slot colData which can be extracted using airway@colData or colData(airway).

First check the data structure of the colData(airway) dataset.

Hint: Built in functions to check data structure

Let’s set colData(airway) as a data frame.

Hint: We will use the as.data.frame() function to do this.

#Check mode of colData(airway) and make change the structure to a data frame.

mode(colData(airway))

dat_airway <- as.data.frame(colData(airway))

dat_airway

The count data is saved under the slot assay. We can extract the count matrix by calling airway@assay or assay(airway). We can also use descriptive statistics to look at the expression acrosss samples. We will sum the expression of each column and scale by 1e6 to get scaled expression value. We will then use the summary() function to look at the range of expression between the samples.

Determine a way to sum the expression of each column.

Hint: You can use a for loop, apply function, or base functions such as colSums()

#Sum the expression of each column, divide by 1e6
#Use summary function to see the range of values between each sample

 head(assay(airway))

 summary(colSums(assay(airway))/1e6)

Differential Expression Analysis using DESeq2

We will use DESeq2 package for differential expression analysis of the airway data set to find differentially expressed genes between untreated and treated samples. We will first load DESeq2 and set up the data to be compatible with DESeq by using the function DESeqDataSet().

We can use the help(“function_name”) or ?function_name to look up the function to get a description.

A description or help pages will show up under the Help tab in the bottom right corner.

#Look up DESeqDataSet() function description

 help("DESeqDataSet")

 ?DESeqDataSet

We can also go to the bioconductor page for DESeq2 and look at the manual for functions as well as a tutorial of using the package itself. Click here to see the page [https://bioconductor.org/packages/release/bioc/html/DESeq2.html].

The function DESeqDataSet includes an argument called design which asks for a formula that expresses how the counts for each gene depends on the variables in colData. In this case we choose variables cell and dex because we care about the cell line and which samples are treated with dexamethasone versus which samples are untreated controls.

DE_airway <- DESeqDataSet(airway, design = ~ cell + dex)

DE_airway

Before we continue, we must set our control group as our reference level for comparison in our differential expression analysis.

DE_airway@colData$dex <- relevel(DE_airway@colData$dex, ref = "untrt")

Now we wil run the differential expression analysis steps through the function DESeq(). Again we can look up the function to learn more about what it does and the arguments needed to run it. We use the results() function to generate a results table with log2 fold changes, p values and adjusted p values for each gene. The log2 fold change and the Wald test p value is based on the last variable in the design formula, in this case variable dex. Therefore our results will show which genes are differentially expressed between the untreated and treated groups.

help("DESeq")

DE_airway <- DESeq(DE_airway)
res <- results(DE_airway)

res

How do we order the results table (res) based on the p-value?
There are already available functions in R that we can use to sort the dataframe.
Hint: Use function order() to order the rows based on p-value

#Use order() to order the results table based on the p-value

res[order(res$pvalue),]

In DESeq2, the function plotMA generates an MA Plot commonly used to visualize the differential expression results. The plot shows the log2 fold changes attributable to a given variable over the mean of normalized counts for all the samples in the DESeqDataSet. Points represent genes and will be colored red if the adjusted p value is less than 0.1. Points which fall out of the window are plotted as open triangles pointing either up or down.

plotMA(res, ylim=c(-2,2))

Manipulate and Visualize Results

Let’s add a column that tell us whether each gene is significant. Using the mutate() function from library dplyr, we can add a column showing whether the significance is TRUE or FALSE based on cutoff padj < 0.01.

#change res to a tibble format to work with dplyr

res <- tbl_df(res)

#add sig column to show which genes are significant or not by using mutate() from dplyr

res <- mutate(res, sig=padj<0.01)

We can use the symbol %>% from library magrittr to represent a pipe. Pipes take the output from one function and feed it to the first argument of the next function. You may have seen something similar in unix with |

res <- res %>% mutate(sig=padj<0.01)

head(res)

Let’s use the filter() function from dplyr to filter out results based on padj < 0.01, and write this to a csv file using write_csv() function from readr.

Try using piping format %>% to do this!

Filter res based on cutoff padj < 0.01 and save this result into a csv file called significant_results.csv

res %>%
filter(padj<0.01) %>%
write_csv("significant_results.csv")

What if we want to generate our own plots? We can use ggplot2 to create our own volcano plot of the differential expression results between the untreated and treated groups.

Now let’s try generating a volcano plot using ggplot2?

Hint: log2FoldChange for x-axis, -1*log10(pvalue) for y-axis, sig to color the points.

Make sure to include argument for points and include the title “Volcano plot”

Bonus: Change the axis titles to something more readable and change the point shapes, or play around with any other parameters to get a feel for how ggplot2 works.

#Create Volcano plot using ggplot2

ggplot(res, aes(log2FoldChange, -1*log10(padj), col=sig)) + geom_point() + ggtitle("Volcano plot")

res %>% ggplot(aes(log2FoldChange, -1*log10(padj), col=sig)) + geom_point() + ggtitle("Volcano plot")

How would you generate the same MA plot above using ggplot2?
Hint: Use baseMean for x-axis, log2FoldChange for y-axis, sig for color.

Make sure to have points and to use a log10 scale for the x-axis (i.e. scale_x_log10()).

Add the title “MA plot” to your plot as well.

#Create MA plot using ggplot2

ggplot(res, aes(baseMean, log2FoldChange, col=sig)) + geom_point() + scale_x_log10() + ggtitle("MA plot")

We can look at our session information including the packages we loaded and worked with.

sessionInfo()

 Workshop 5: Machine Learning

Workshop 5: Machine Learning

This workshop provides a basic introduction to machine learning.
First we will talk about data preparation and exploration.
Then we will introduce a general pipeline for unsupervised and supervised learning.

You are expected to study the the following content:

	Dataset exploration and validation

	
	Learning models

	
	Unsupervised learning

	Supervised learning

In the workshop, do some basic data exploration and modeling.

	Machine Learning Workshop

Tutorials

	Dataset exploration and validation
	Features

	Data exploration

	Data preparation

	Learning models

	Unsupervised
	Dimensionality reduction

	Clustering

	Supervised
	Classification models

	Parameters

	Cross validation

	Fitness of the model

	Semi-supervised learning

	Summary notes

	Machine Learning Workshop
	Data exploration

	Unsupervised learning

	Supervised learning

 Data preparation

Data preparation

The data in machine learning is presented in the form of a matrix (data frame in R) consisting of N rows (samples or instances) and M columns (features).

Features

Features can be different types:

	Binominal (TRUE/FALSE)

	Categorial/nominal (different classes)

	Text - not supported by all applications

	Numeric (Real numbers)

	Integer (Natural numbers)

Note that a common mistake is to mischaracterize features. Nominal values are usually presented by numbers but cannot be compared. If not set properly, errors could occur.

Example: Many choose to set education status as 1: no college, 2: college degree, 3: post-graduate. Ask yourself, does 1.5 have a meaning?

Example: Stages of a tumor is represented by numbers (1, 2, ..) but it nominal.

Special features include the ID, label, batch, etc.
They are treated differently.
ID is excluded from models and must be unique.
Label is used for supervised learning (classification). A dataset can only have one label (per each run).

Meta-features are features made using the measured features.
For example BMI is a feature made from weight and height.
PCA vectors are features based on all features.

Data exploration

Explore the data to validate your data and potentially find new patterns. Data validation means that you should show known relations shown in the literature is present in your data. For example if a gene has been highly associated with your case studies, you should observe the same pattern in your data. Or if you have blood pressure and heart disease, they should be correlated. In addition you should show your data is representative of the real population. For example if you are working on samples from USA and you have an obesity feature (not label) you should make sure that the ratio of obese people is comparable to the ratio in USA. Or if the ratio of female to male is about 50%.

Draw many plots. Show how the features are distributed and how you expect them to be. Show your data is balanced (e.g. female and male have the same ratio) and if not be aware of the imbalance (for example rare diseases). The probability distributions in your data can result in misinterpretation.

In order to validate your data you can look for correlations between numeric features and associations between nominal features. The known relations in the literature should be validated by your data. You might find new relations and associations which can further be studied.

Let’s look at an example on as subset of features patients with diabetes type 2.

 age sex education living smoking weight height LDL HDL
Min. : 4.0 F:1688 1 :976 1 :1319 0:2148 Min. : 16.00 Min. : 83.0 Min. : 11.0 Min. : 16.0
1st Qu.:45.0 M: 757 2 :753 2 : 872 1: 130 1st Qu.: 61.00 1st Qu.:151.0 1st Qu.: 56.0 1st Qu.: 45.0
Median :52.0 3 :377 NA's: 254 2: 23 Median : 71.00 Median :157.0 Median :106.0 Median : 60.0
Mean :51.6 NA's:339 3: 144 Mean : 73.73 Mean :157.9 Mean :104.3 Mean :106.8
3rd Qu.:60.0 3rd Qu.: 87.00 3rd Qu.:165.0 3rd Qu.:141.0 3rd Qu.:160.0
Max. :89.0 Max. :161.00 Max. :196.0 Max. :700.0 Max. :665.0
NA's :15 NA's :332 NA's :620 NA's :587 NA's :404

Education is the level of education (1=finished high school, 2=college degree, 3=post graduate) and living is the type of living environment (1=city/town, 2=village). Smoking is another nominal feature (0=doesn’t smoke, 1: occasional smoker, 2=light smoker, 3=heavy smoker). HDL and LDL are good and bad cholesterol levels in blood. Missing data is represented with NAs.

1. Correlation matrix: calculate the correlation between the features and draw a heatmap.
Look at the highly correlated features. Make sure the correlations are valid (by literature) and mark down if they are direct correlations or indirect.

[image: ../../_images/corr_matrix.png]
2. Association rules: find associations between sets of features to another feature.
Each rule associates a set of features to another feature. The rule certainty is measured using two parameters: support or frequency (how much of the data supports it) and confidence (out of all applicable data points, how many follow the rule). Association rules are applied on nominal features or discrete values.

> library(arules)
> rules <- apriori(data, parameter=list(support=0.10, confidence=0.50))
Apriori

Parameter specification:
 confidence minval smax arem aval originalSupport maxtime support minlen maxlen target ext
 0.5 0.1 1 none FALSE TRUE 5 0.1 1 10 rules FALSE

Algorithmic control:
 filter tree heap memopt load sort verbose
 0.1 TRUE TRUE FALSE TRUE 2 TRUE

Absolute minimum support count: 244

set item appearances ...[0 item(s)] done [0.00s].
set transactions ...[26 item(s), 2445 transaction(s)] done [0.00s].
sorting and recoding items ... [23 item(s)] done [0.00s].
creating transaction tree ... done [0.00s].
checking subsets of size 1 2 3 4 5 done [0.00s].
writing ... [477 rule(s)] done [0.00s].
creating S4 object ... done [0.00s].
> rules
set of 477 rules
 > inspect(head(rules, n = 10, by ="lift"))
 lhs rhs support confidence lift count
[1] {sex=M,smoking=0,weight=[80,161]} => {height=[162,196]} 0.1132924 0.7527174 2.997384 277
[2] {sex=M,weight=[80,161]} => {height=[162,196]} 0.1525562 0.7474950 2.976588 373
[3] {sex=M,smoking=0,height=[162,196]} => {weight=[80,161]} 0.1132924 0.8683386 2.920341 277
[4] {sex=M,height=[162,196]} => {weight=[80,161]} 0.1525562 0.8477273 2.851022 373
[5] {weight=[80,161],height=[162,196]} => {sex=M} 0.1525562 0.8555046 2.763156 373
[6] {smoking=0,weight=[80,161],height=[162,196]} => {sex=M} 0.1132924 0.8195266 2.646952 277
[7] {height=[162,196]} => {weight=[80,161]} 0.1783231 0.7100977 2.388155 436
[8] {weight=[80,161]} => {height=[162,196]} 0.1783231 0.5997249 2.388155 436
[9] {sex=M,smoking=0} => {height=[162,196]} 0.1304703 0.5885609 2.343699 319
[10] {smoking=0,height=[162,196]} => {weight=[80,161]} 0.1382413 0.6954733 2.338971 338

You should make sure that all the top rules are meaningful. For example: {age=[57,89]} => {education=1} makes sense since the data was collected in a medium size city in the south of Iran, and the older people were most likely uneducated.

3. Cognitive map shows the relations known in your data and the ones you also found.

[image: ../../_images/cognitive_map.png]

Data preparation

The most important but neglected part of machine learning and data mining is preparing the data.
If your data is invalid, no matter what skills you have, the results will be invalid.
The goal of data preparation is to make sure the data is representative and correct.

1. Typos are the most common error in data. Most datasets are collected over time, manually input by operators. For any nominal value you should check the levels in the data. For example for sex make sure you only have 2 levels (F/M or female/male). For numeric values draw boxplots and histograms. Make sure the data follows the expected distribution and estimates (mean and standard deviation are same as expected). If you have nominal features, make sure the numeric values for each are correctly spread out. For example if you have sex and age in your data, make sure the age distribution for female and male are comparable.

2. Missing data is common. Make sure they are presented in a correct format recognized by the tool and code you use. Some tools take NA or blanks as missing, some use “?”. Make a table and see which data points are missing and how often. Try to understand why and if it is randomly missing or has a pattern? Decide how to handle them. Some methods accept missing values and some don’t. Understand how missing values are interpreted. If you remove them have a good explanation of your criteria. Some might choose to replace missing data with nearby datapoints if possible.

3. Normalization is an important step to make the samples and features comparable inside and in between datasets. Choose an appropriate normalization method and explain how it was done. In case of classification, the test has to be normalized in the same way but independent of the train data to avoid leaking train information into test.

Expression data is usually log2 transformed and then quantile normalized. RMA and frozen-RMA are versions of quantile normalization common for microarray datasets which handle outliers better. zscore is a intuitive normalization method but flattens the data (forces them into a normal) and range normalization keeps the distribution but is very sensitive to outliers. Centering numeric values around zero is a good practice for some models. It is a good practice to make features in the same range to be able to compare the weights assigned to each fature by a model. For example if you have a feature in the order of thousands and a feature in the order of 10, the weights might seem smaller for the former, while the truth is the weights cannot be directly compared. Note than normalizing can be applied on features (normalizing measurements over all samples) or on samples (correcting for batch effects).

4. Feature selection and reduction is used to chose relevant features. Note that the number of features should be significantly less than the sample size (M<<N). In general a model with less parameters is a better model and is less likely to overfit. Redundant features (usually very highly correlated features) should be removed for some models (any model doing determinant on the data matrix). Principle Component Analysis is a good practice to reduce the number of features while maintaining the variability. Feature selection can be done based on variability (keeping highly variable features), fold changes (difference in mean between label classes such as deferentially expressed genes in gene expression data), or recursively by applying a classification model and applying the weights (choosing the features with highest importance). Feature reduction can be done based on correlation (removing highly correlated features) or invariability (features which have similar distributions between classes). Note that in case of classification feature selection should be done only on the train data and not test.

After data preparation, you should be able to explain the data in terms of what features there are and what distributions they follow. You should show your data is representative and balanced. You should handle missing data in a rational way. You should have a well established method for choosing features.

 Workshop 5: Learning

Workshop 5: Learning

After preparing the data you can learn it.
There are two main learning methods: supervised, when we have labels and we want to learn a model using those to predict future samples (classification) or when we don’t know the label and we simply want to find pattern and classes (clustering).

	Unsupervised

	Supervised learning

You can choose to code your models in R or Python or use specialized interatice platforms such as RapidMiner, KNIME, or Weka.

 Unsupervised learning

Unsupervised learning

“Unsupervised learning is a type of machine learning algorithm used to draw inferences from datasets consisting of input data without labeled responses. The most common unsupervised learning method is cluster analysis, which is used for exploratory data analysis to find hidden patterns or grouping in data.” read more… [https://www.mathworks.com/discovery/unsupervised-learning.html]

[image: ../../_images/unsupervised_flowchart.png]

Dimensionality reduction

It is hard to interpret the data in the feature space (M dimensions). The first exploration step into data is to reduce the dimensionality to 2 dimensions and plot the dimensions in x-y coordinates which are human readable.

	Principle Component Analysis (PCA) is the most commonly used dimensionality reduction method. Each principle component is a linear combination of \(weights.features\). Weights are adjusted to capture the most variability across samples. The components are uncorrelated and can be used as features for further clustering or classification. Common practice is to plot principle components and color the samples by different features to see how the samples are separating. You should keep in mind that while PCA shows the variability in the data, it is not always meaningful and might be showing noise or batch errors.

[image: ../../_images/grz_tissues_PCA.png]

	Singular-value decomposition (SVD) calculates the diagonal matrix S on the data matrix A :

\[A_{M \times N} = U_{M \times M} S_{M \times N} V_{N \times N}\]

where M is the feature size (columns) and N is the sample size (rows). Read more here [http://andrew.gibiansky.com/blog/mathematics/cool-linear-algebra-singular-value-decomposition/].

Clustering

Clustering algorithms try to divide the data samples based on some sort of similarity into different clusters. An example is to cluster single cell gene expression data to find tissue types.

	Hierarchical (agglermorative) clustering is the most basic clustering algorithm. The samples are put in its own clusters and then iteratively the most similar clusters are combined to create super-clusters. This can be done bottom up or downwards to form a dendrogram which you can cut at any level to obtain different number of clusters. Hierarchical clustering is usually shown as a heatmap.

[image: ../../_images/hierarchical_clustering.png]

 Supervised learning

Supervised learning

Another common learning approach is to learn a predictive model on labeled data to make predictions on new unknown samples. This is referred to as classification.
Classification is applied to a subset of the data - train, and tested on a smaller subset - test. So the first step after data preparation is to randomly split the data into two sets (usually 75% train and 25% test). Check if your train and test are not biased (by age, sex, or label). The purpose of separating some data as test is to later verify the model and ensure we are not over-fitting. The most critical part in classification is to make sure the train data does not lea^k into the test, meaning no information from the train should be secreted into the test data - whether at normalization, feature selection, or when learning the model.

[image: ../../_images/supervised_flowchart.png]

Classification models

Probability based

These models use probability to predict the label.

	Naive-bayes uses Bayes theorem on the feature distribution and probabilities. Usually is used as a baseline model (default or worse). Applies to nominal labels.

	K nearest neighbors (KNN) predicts each sample based on majority vote of its K nearest neighbors (the K most similar samples). It works good in tumor/tissue samples. The kernel determines what similarity measure we are applying. Applies to nominal labels.

Regression

This group of classifiers to separate numeric features using regression. The separation can be single line (a weighted sum of the features to estimate the label) or a plane in a M-dimensional space. (M is the number of features)

	Linear regression is a simple model used to find effect size of features. It’s the first model you would run to check if there is some significant correlation between your features and label; gives you weights (intercepts) and applies to numeric labels.

	Logistic regression is similar to linear regression but applies to nominal labels.

	Support Vector Machine (SVM) is one of the strongest and most popular learning models. It produces vectors to separate the samples. adjusting the kernel can make it very powerful. Applies to binominal labels. The prediction output is probabilistic: [0, 1] for each class.

Trees

At each iteration a tree randomly samples the train data (sampling) and chooses a random set of features (bagging). The it find one feature that on a threshold divides the sampling data such that the labels are best separated. At each node a decision is to be made and following the branches we can get to a leaf node which is marked with the most probable label. The label should be nominal for trees.

Bellow is a decision tree to predict if a sample is a vampire. Each branch ask a question and based on that divides the samples. Following the branches you get to a leaf which is labeled by the label majority of the train samples ending there.

[image: ../../_images/vampire-decsion-tree.jpg]
Trees are very popular in gene expression since they give an understanding of which genes are most important (top nodes) and what is the splitting criteria (if expression > threshold it’s a case or control) and thus the results can be tested in the lab.
Parameters on trees matter a lot. Trees are random algorithms (random sampling). Unlike regression models, trees are not linear. Trees can be used for feature selection.

	Decision tree is a binary tree with each node being a decision on a feature.

	Random forest is a collection of decision trees, each tree capturing one aspect of the data. Works best in case you have different tissue or classes (race, female/male) of data within labels.

	Decision Stump is a 1 level decision tree. Gives you the best feature to separate the data.

	Gradient boosted trees uses boosting to combine weak decision trees. The leaf have a scoring value and the final label is predicted based on the sum of the leafs of each decision tree. This way if by random chance we found a weak tree, another random tree will make up for it.

Rule induction

Rule induction algorithms are similar to decision trees in the form that they find rules that split the data and made a hierarchy of rules. Unlike decision trees they use all the data and do not apply sampling or bagging.

Neural networks

Inspired by the way human brains work, neural networks are commonly used in Natural Language Processing (NLP), speech recognition and Artificial Intelligence (AI). They are black box learning models, meaning we don’t know how the model is working and we don’t care; we are only interested in the their prediction ability. Neural networks can literally learn anything. A 4 layer neural network can learn to drive a car or recognize faces. A 2 layer can learn to find shadows and read handwriting. Despite the power of neural networks, they are not favored in bioinformatics due to their black box nature.

Parameters

It is very important that you completely understand how the model you are using works.
You must be able to justify choosing that model and be fully aware of the algorithm and the parameters it takes.
R will allow you to run any model with default parameters. But setting the correct parameters is key to finding the best model.
In order to find the best parameter combination, you can use optimization grids: try every possible value of each parameter with some resolution. For example for two parameters of a decision tree, minimum confidence and maximal gain, you can try all possible combinations {0.00, 0.01, 0.02, …, 0.50} x {0.00, 0.01, 0.02, …, 1.00} which is total 50x100=5,000 combinations. Given 10X validation that would be 50,000 models to learn for 2 parameters.

Kernels

Every classification model uses a pattern analysis method to find patterns within label classes. This pattern analysis can be determined by different kernels. A kernel is a function f (features –> label). For example a linear kernel is defined as \(\sum{weights.X}\), a polynomial kernel of degree \(d\) is defined as \(\sum{weights.X^d}\), radial basis function is \(exp(- \frac{|X-X'|^2}{2\sigma ^2})\), …
Understand the kernel you choose. And in general, the more simple kernels are preferable (if linear works fine don’t go to a ANOVA kernel). Complicated models put you at the risk of over-fitting.
Whatever choice you make in life, you should be able to justify it.

Cross validation

When learning the model on the train set, you should always use cross-validation.
Cross validation is a method to divide the data (train) into X portions. In a 10X validation, the data will be divided into 10 portions, and each time 90% of the data will be used to learn the model and then the model will be tested on the remaining 10%. The final performance will be the average of all 10 models.

[image: ../../_images/cross_validation.png]
Cross validation helps to avoid overfitting. Also by calculating the the standard deviation of the performances, we can see how robust the model is. The following figure illustrates how cross validation will help find the best fit. The top left model is overfitted (while the average performance will be good the standard deviation will be high). The bottom right model is under-fitting, where the average performance will be low.

[image: ../../_images/CV_fit.gif]
Note that cross validation is applied when learning a model on the train. It is a good approach to build a model but after this we still need to test the model on independent test data. Why? Because the splits in the cross validation were correlated, so cross-validation is not a test performance, but rather a training performance.

Fitness of the model

A classification model is measured by its fit: how similar are the predicted labels to the actual labels. We could obtain very high fitness by increasing the number of the features (M). This situation is referred to as overfitting. This means instead of learning general patterns in the data we are learning noise and individual patterns, such that although we do respectively good on the train dataset, our model will fail to perform well on new data (test set) due to lack of generalization.
On the contrary, underfitting is when our model is over-generalizing, and thus cannot perform well even on train. Underfitting is easier to detect because the model has low performance (low accuracy or precision), while over-fitting can be tempting as you see bloated results.

Nominal labels

Confusion matrix is a table showing how the samples were classified. The columns show the actual labels and the rows are the predicted labels.

[image: ../../_images/confusion_matrix.png]
TN=true negative (samples predicted to be in class negative and that was correct)
TP=true positive (samples predicted to be in class positive and that was correct)
FN=true negative (samples predicted to be in class negative and that was incorrect)
FP=true positive (samples predicted to be in class positive and that was incorrect)

If you show the performance of the model as a confusion matrix, fitness can be measured by 4 main criteria:

	Accuracy

\[\frac{TP + TN}{TP + FP + TN + FN}\]

	Precision

\[\frac{TP}{TP + FP}\]

	Recall

\[\frac{TP}{TP + FN}\]

	Area Under Curve (AUC): I will not go into detail but AUC measures “the probability that a randomly chosen positive instance higher than a randomly chosen negative one (assuming positive ranks higher than negative)”.

Numeric labels

In the case of numeric labels, we have to measure the error of the prediction. Here the prediction is not binary. We need to measure how close to the real value the model predicts. The fitness measures for numeric values are:

	Mean Squared Error (MSE)

\[MSE = \frac{1}{N} \sum{(label_{predicted} - label_{actual})^2}\]

	Root Mean Squared Deviation (RMSD)

\[RMSD = \sqrt{\frac{\sum{(label_{predicted} - label_{actual})^2}}{N}}\]

Learning curves

Receiver operating characteristic (ROC) curve illustrates the performance of a model. The true positive rate (sensitivity) is plotted as a function of the false positive rate for different cutoffs of a parameter. The area under the curve is the AUC measure mentioned above.

[image: ../../_images/roc_curve.png]
Learning curves plot the performance of the model for different sample sizes. It is used to show our model is general and not overfitting. Note that in the following figure if the train and test error lines don’t get tangent, that means we are underfitting. If the lines cross that means we are overfitting.

[image: ../../_images/learning_curve.png]

Semi-supervised learning

Semi-supervised learning is applied to data that is partially labeled. First using a clustering algorithm you find clusters, then you use the known labels and propagate them to the nearby samples.

Summary notes

	Do not skip the data preparation step. Never trust the data you are working on. You might end up working for months trying to improve a dataset then notice there was some mislabeled samples. Or get very unexpected good results and then notice you had redundant samples.

	Check for imbalances in your data. If 90% of your data is control and 10% case, a model that classifies everything as control will show 90% accuracy. If the nature of your data is imbalanced, make sure you specify balanced loss criteria while learning the model (positive and negative error will be treated respectively). When splitting the data to train and test make sure the splits are balanced.

	The main mistake in learning rises from train leakage to test. If the normalization method uses information from other samples (e.g. quantile normalization), it should be done separately on train and test. Feature selection/reduction should be done only on train, then the final features will be extracted from the test. No cheating.

	When applying a model understand how the models work. Know it’s parameters. Make rational choices and optimize parameters.

	Test multiple models and draw ROC curves to compare their performance.

	Show more than one performance measurement. Do not rely on accuracy. Know what the expectation of your model is. The accuracy for a plane flight related model should be 99.99% but for human disease with so much variability, 80% can be a good prediction.

	When possible use more simple models. If you model performs 90% with 100 features and 89% with 10 features, the later is a better model. Same goes for complexity, e.g. degree of a kernel. In general avoid using degree greater than 2.5.

	Always draw learning curves to check for under/overfitting. Keep in mind every model is overfitting to some extent.

	After you tested your model on the test and proved your model is correct and generalized, combine all the data and make a final model with cross-validation.

	The power of a model is in its sample size and good feature selection. More samples make a better model.

 Machine learning workshop

Machine learning workshop

In this workshop, we will study GSE53987 [https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE53987] dataset on Bipolar disorder (BD) and major depressive disorder (MDD) and schizophrenia:

Lanz TA, Joshi JJ, Reinhart V, Johnson K et al. STEP levels are unchanged in pre-frontal cortex and associative striatum in post-mortem human brain samples from subjects with schizophrenia, bipolar disorder and major depressive disorder. PLoS One 2015;10(3):e0121744. PMID: 25786133 [https://www.ncbi.nlm.nih.gov/pubmed/25786133]

This is a microarray data on platform GPL570 (HG-U133_Plus_2, Affymetrix Human Genome U133 Plus 2.0 Array) consisting of 54675 probes.

The raw CEL files of the GEO series were downloaded, frozen-RMA normalized [https://bioconductor.org/packages/release/bioc/html/frma.html] , and the probes have been converted to HUGO gene symbols using the annotate package [https://www.bioconductor.org/packages/release/bioc/html/annotate.html] averaging on genes. The sample clinical data (meta-data) was parsed from the series matrix file [ftp://ftp.ncbi.nlm.nih.gov/geo/series/GSE53nnn/GSE53987/matrix/]. You can download it here:

<https://github.com/BRITE-REU/programming-workshops/blob/master/source/workshops/05_Machine_learning/data/GSE53987_combined.csv

In total there are 205 rows consisting of 19 individuals diagnosed with BPD, 19 with MDD, 19 schizophrenia and 19 controls. Each sample has gene expression from 3 tissues (post-mortem brain).
There are a total of 13768 genes (numeric features) and 10 meta features and 1 ID (GEO sample accession).

	Age

	Race (W for white and B for black)

	Gender is F for female and M for male

	Ph is the ph of the brain tissue

	Pmi is the post mortal interval

	Rin is the RNA integrity number

	Patient is unique for each patient. Each patient has up to 3 tissue samples. The patient ID is written as disease followed by a number from 1 to 19

	Tissue is the tissue the expression was obtained from.

	Disease.state is the class of disease the patient belongs to: bipolar, schizophrenia, depression or control.

	source.name is the combination of th etissue and disease.state

Data exploration

	check all the features, which one is numeric, binominal..

sex is binominal balanced, age can be centeralized, see if the measurements are normally distributed and (we say) what is the normal expected in literature, race is very unbalanced

what would the labels be? could be (MDD/BPD/control) or tissue () or combine (9 classes)

what is the mean age of each disease? boxplots

	plot PCA, (we give them) code for plotting, color by disease, tissue, race, sex …

repeat for each tissue (which tissue is more predective)

repeat for each disease…

	feature selection

by DE, by PCA weights, by variability (limma), fisher’s criteria

	correlation matrix

Unsupervised learning

	clustering, hierarichal (heatmap)

	association rules

Supervised learning

	learning models (on 2 sets of labels), logistic regression

 Workshop 6: SQL

Workshop 6: SQL

Tutorials

	Relational Databases
	Database Design

	Adding Data

	Querying Data

	SQL Workshop
	Tasks

	SQLite Dot Commands

	Solutions to Common Queries

 Workshop 6: An Introduction to Relational Detabases

Workshop 6: An Introduction to Relational Detabases

This workshop provides a basic introduction to Relational Databases using the SQLite program.

There are three main aspects of database usage,

	database design and construction

	loading data

	querying the data

Below I discuss the main points of each and introduce use of the SQL language in the context of the sqlite3 database management program. This document contains the following sections:

	Database Design

	Adding Data

	Querying Data

Database Design

Relational databases, the most common type, are designed around entities and relationships between entities. Database design deals with these.

For example, a movie database might contain information on movies and actors. These are entities. The relationship that ties certain actors to certain movies can be called the cast. The figure below is part of the design of such a database. In it, the rectangles are entities and the diamond is a relationship. The lines connect the entities to the relationship.

[image: ../../_images/movies.actors.cast.er.diagram.png]
Relational databases consist of tables of data. Each table consists of rows. In an entity table, each row contains data about one instance of that entity. For example, in a movie table, each row has information about one movie. The following is a description of a table to hold movie data written is SQL. This description is used to create the movie table.

CREATE TABLE movies (
 mid integer primary key,
 title text,
 year integer,
 genres text
);

The data in a row is divided into fields. Each field holds a particular piece of data. In our movie rows, the individual fields are:

	mid – a unique integer identifier for the row

	title – the movie title, stored as a text string

	year – the year the movie came out, stored as an integer

	genres – a list of classification labels for the movie content, stored as a text string

The primary key notation on the mid field indicates that the data will be sorted for fast lookup on this field.
The following are a few rows of data from the movies table. This data comes from the publicly available IMDb (Internet Movie Database) at https://www.imdb.com/interfaces/ .

mid title year genres
---------- ------------------------------ ---- --------------------
369610 Jurassic World 2015 Action,Adventure,Sci
1326190 Aliens: Zone-X 2015 Sci-Fi
1392190 Mad Max: Fury Road 2015 Action,Adventure,Sci
1828251 Journey to Mt. Fuji 2015 Adventure,Family,Sci
2395427 Avengers: Age of Ultron 2015 Action,Adventure,Sci
2577662 The Rise of the Robots 2015 Sci-Fi
2651352 Ratpocalypse 2015 Fantasy,Sci-Fi

Similarly, each row in an actors table holds data about an actor. The following is a description of a table to hold actor data written is SQL. Again, this description is used to create the actor table.

CREATE TABLE actors (
 aid integer primary key,
 name text
);

Rows in this table hold only two values:

	aid – a unique integer identifier for the row

	name – the name of the actor, stored as a text string

The following are a few rows of data from the actors table.

aid name
---------- ------------------------------
1 Fred Astaire
2 Lauren Bacall
3 Brigitte Bardot
4 John Belushi
5 Ingmar Bergman
6 Ingrid Bergman
7 Humphrey Bogart
8 Marlon Brando
9 Richard Burton
10 James Cagney

Relationship tables are different. They hold values that tie the entities together. Instead of using actual data, the identifiers are used in a relationship table. The following is a description of the cast table.

CREATE TABLE cast (
 mid integer,
 aid integer,
 role text
);

The fields are:

	mid – an integer identifier from the movies table

	aid – an integer identifier from the actors table

	role – a description of the actor’s role in the movie, stored as a text string

Movies typically have more than one actor, so the cast table will typically have more than one row for the same movie, each with a different actor. For example, the movie “Wonder Woman” has the following row in the movies table:

mid title year genres
---------- ------------ ---------- ------------------------
451279 Wonder Woman 2017 Action,Adventure,Fantasy

Note the movie row identifier mid = 451279. In order to tie the movies to its actors, the same identifier, is used in the cast table.

mid aid role
---------- ---------- ------------------------------
451279 2933757 ["Diana"]
451279 1517976 ["Steve Trevor"]
451279 705 ["Antiope"]
451279 205063 ["Etta"]

Who are these actors? The only way to find out is to go to the actors table and look for the rows with the corresponding aid identifiers.

aid name
---------- --------------------
2933757 Gal Gadot
1517976 Chris Pine
705 Robin Wright
205063 Lucy Davis

Adding Data

In sqlite3, the easiest way to add data to a table is to load it from a file. sqlite3 has a special command for this called .import that is one of a series of commands that start with a period and are called Dot Commands [https://github.com/BRITE-REU/programming-workshops/blob/master/source/workshops/06_SQL/Workshop_SQL.rst#sqlite-dot-commands].

The file should:

	contain rows of data

	
	have in each row,

	
	one value for each field

	fields in the same order as the create table statement

	
	all fields separated by the same character, such as

	
	a tab “\t” (a tab separated file or tsv)

	a comma “,” (a comma separated file or csv)

For example, importing movie data into the movies table can be done as follows. First set the type of field separator. This can be done with .mode csv or .mode tabs command, then import the data from the file movies.tsv. Note that the prompt sqlite> appears when the sqlite3 program is running.

sqlite>.mode tabs
sqlite>.import movies.tsv

Querying Data

Data is queried with SQL select statements. The basic form of an SQL query (Structured Query Language) for a single table is:

SELECT field name, field name, ...
FROM table name
WHERE condition [AND|OR condition etc.]
GROUP BY field name
ORDER BY field name [asc|desc] ...
LIMIT integer

The individual query parts are referred to as clauses. The Select and From clauses are required, all others are optional.

	Select – lists the fields in the output, any order

	From – lists the table(s) where the data is stored

	Where – gives boolean condition(s) (true/false) limiting the rows used

	Group by – used with aggregates like count(*)

	Having – gives boolean conditions limiting output after a GROUP BY

	Order by – sorts the output by field(s), either ascending (ASC) or descending (DESC)

	Limit – restricts the output to a maximum number of rows

The simplest query returns the whole table. Limit is used because the table contains over 100,000 rows. Here, “*” means “all fields.”

SELECT *
FROM Movies
LIMIT 10

mid title year genres
------ -------------- ---- ----------
35423 Kate & Leopold 2001 Comedy,Fan
66853 Na Boca da Noi 2016 Drama
69049 The Other Side 2018 Drama
88751 The Naked Mons 2005 Comedy,Hor
94859 Chief Zabu 2016 Comedy
96056 Crime and Puni 2002 Drama
97540 Responso 2004 \N
100275 The Wandering 2017 Comedy,Dra
102362 Istota 2000 Drama,Roma
107706 Stupid Lovers 2000 \N

Note that \N means NULL or no value.

To restrict the fields, use field names:

SELECT title, genres, year
FROM Movies
LIMIT 10

title genres year
-------------- -------------------- ----
Kate & Leopold Comedy,Fantasy,Roman 2001
Na Boca da Noi Drama 2016
The Other Side Drama 2018
The Naked Mons Comedy,Horror,Sci-Fi 2005
Chief Zabu Comedy 2016
Crime and Puni Drama 2002
Responso \N 2004
The Wandering Comedy,Drama,Fantasy 2017
Istota Drama,Romance 2000
Stupid Lovers \N 2000

To restrict records, impose a condition

SELECT title, genres, year
FROM Movies
WHERE year = 2018
LIMIT 10

title genres year
-------------------------- -------------------- ----
The Other Side of the Wind Drama 2018
T.G.M. - osvoboditel \N 2018
To Chase a Million Action,Drama 2018
Fahrenheit 451 Drama,Sci-Fi,Thrille 2018
Nappily Ever After Comedy,Drama,Romance 2018
Alita: Battle Angel Action,Adventure,Rom 2018
Surviving in L.A. Comedy,Drama,Romance 2018
Escape from Heaven Comedy,Fantasy 2018
The Last Full Measure Drama,War 2018
Caravaggio and My Mother t Comedy,Drama 2018

For string comparison several options are available.

	= – strings must match exactly (usage: field = “pattern”)

	not case sensitive

	LIKE – strings must match exactly (usage: field LIKE “pattern”)

	can use wildcards in pattern

	‘%’ for zero or more “I don’t care” letters

	‘_’ for one letter

	not case sensitive

The following example uses a condition on the title and genres to restrict the output to titles which begin with “star” and where “sci-fi” occurs somewhere in the genres field.

sqlite> select title, genres, year
 ...> from movies
 ...> where year = 2017 and title like "star%" and genres like "%sci-fi%"
 ...> limit 10;

title genres year
----------------------------- -------------------- ----
Star Wars: The Fallen Brother Action,Fantasy,Sci-F 2017
Starwatch Action,Drama,Sci-Fi 2017
Star Wars: The Dark Reckoning Sci-Fi 2017
Star Trek: The Paradise Maker Adventure,Animation, 2017

Joins

When you want to combine data from different tables, joins are used. This is how to retrieve information on both actors and movies in the same query. Joins occur in the FROM clause. All the required tables are listed and the columns that should be used to join the rows are specified. Recall the actors – cast – movies diagram from above. Now it’s labeled with the columns that join the entity and relationship tables.

[image: ../../_images/movies.actors.cast.er.diagram.with.primary.keys.png]
Going back to the Wonder Woman example. Here is a query that returns the actors by looking for the movie name. The results are shown after the query.

sqlite> select mid, title, aid, name, role
 ...> from movies join cast using(mid) join actors using (aid)
 ...> where title like "wonder woman";

mid title aid name role
---------- ------------ ---------- ---------- --------------------
451279 Wonder Woman 2933757 Gal Gadot ["Diana"]
451279 Wonder Woman 1517976 Chris Pine ["Steve Trevor"]
451279 Wonder Woman 705 Robin Wrig ["Antiope"]
451279 Wonder Woman 205063 Lucy Davis ["Etta"]

Notice the joins in the from clause. The first one is

movies join cast using(mid)

This indicates that rows from movie should be combined with rows from cast when they share the same mid value. In effect, this produces an intermediate table with the following rows: mid, title, aid, role as can be seen in the following query.

sqlite> select *
from movies join cast using (mid)
limit 10;

mid title year genres aid role
------ -------------- ---- ---------- -------- --------------
35423 Kate & Leopold 2001 Comedy,Fan 212 ["Kate McKay"]
35423 Kate & Leopold 2001 Comedy,Fan 413168 ["Leopold"]
35423 Kate & Leopold 2001 Comedy,Fan 630 ["Stuart Besse
35423 Kate & Leopold 2001 Comedy,Fan 5227 ["Charlie McKa
66853 Na Boca da Noi 2016 Drama 180878 ["Vítor Hugo"
66853 Na Boca da Noi 2016 Drama 206883 ["Hugo"]
66853 Na Boca da Noi 2016 Drama 94426 \N
66853 Na Boca da Noi 2016 Drama 138681 \N
69049 The Other Side 2018 Drama 1379 ["Jake Hannafo
69049 The Other Side 2018 Drama 709947 ["John Dale"]

The second join is:

X join actors using (aid)

where X is the result of the first join. This indicates that rows from the first join should be combined with rows from actors when they share the same aid. Again, this has the effect of producing an intermediate table with one additional field, name.

sqlite> select *
from movies join cast using (mid) join actors using (aid)
limit 10;

mid title year genres aid role name
------ -------------- ---- ---------- -------- -------------- --------------------
35423 Kate & Leopold 2001 Comedy,Fan 212 ["Kate McKay"] Meg Ryan
35423 Kate & Leopold 2001 Comedy,Fan 413168 ["Leopold"] Hugh Jackman
35423 Kate & Leopold 2001 Comedy,Fan 630 ["Stuart Besse Liev Schreiber
35423 Kate & Leopold 2001 Comedy,Fan 5227 ["Charlie McKa Breckin Meyer
66853 Na Boca da Noi 2016 Drama 180878 ["Vítor Hugo" Rubens Correia
66853 Na Boca da Noi 2016 Drama 206883 ["Hugo"] Ivan de Albuquerque
66853 Na Boca da Noi 2016 Drama 94426 \N Roberto Bonfim
66853 Na Boca da Noi 2016 Drama 138681 \N Marilia Carneiro
69049 The Other Side 2018 Drama 1379 ["Jake Hannafo John Huston
69049 The Other Side 2018 Drama 709947 ["John Dale"] Robert Random

To obtain the results we’re interested in, sqlite searches the rows in the final intermediate table for those whose titles match “wonder woman”.

 SQL Workshop

SQL Workshop

Tasks

In the workshop, we’ll do the following. See the instructions below for guidance in each task.

	Task 1: Create tables for movies, actors, and cast.

	Task 2: Add data to the tables using the files movies.tsv, actors.tsv, cast.tsv.

	Task 3: Write queries to get answers for the following.

Using SELECT and WHERE in a single table

	Pick a movie you know from year 2000 or later and find out its mid. (answer is mid)

	Pick an actor you know and find out her or his aid. (answer is aid)

	Pick a year and list the first five movies in the year you picked with titles that start with a “b” and with “comedy” in the genres column. (answer is five rows, each containing year, title, genre)

Using count()

	How many actors are listed in the actor table? (answer is a count)

	How many movies in the movie table? (answer is a count)

	How many movies have the word “bride” in the title? “groom” in the title? (answer for each is a count)

	How many actors have a first name that starts “Amy”? (answer is a count)

Using Group By

	List the number of movies in each year. (answer is multiple rows, each containing year and count)

Using joins

	Pick a favorite actor and list all titles and years of the movies that person appears in. (answer is multiple rows, each containing name, title, year)

	Pick a movie and find all the actors that appeared in it. (answer is multiple rows, each containing title, name)

Using ORDER BY

	List the top ten actors with the most roles. (answer is multiple rows, each containing name, count of roles)

Using the same table more than once in a join

	Find two actors that appear together in two different movies (harder). (answer is multiple rows, each containing actor1, actor2, movie1, movie2)

Task 1

Starting and stopping sqlite.

The following starts sqlite and creates a database file mydatabase.db or uses that file if it already exists. Note that % is used below as an arbitrary symbol for your system prompt.

%sqlite3 mydatabase.db

The following stops sqlite. Note that “sqlite>” is the sqlite prompt.

sqlite> .quit

Create a file create.txt in an editor and enter the CREATE TABLE statements for movies, actors, and cast. Also add the following two lines to your create.txt file. They create indexes which sort the data in the cast file for fast lookup. This is necessary because the cast table doesn’t have a primary key.

CREATE INDEX mid_aid_index on cast (mid, aid);
CREATE INDEX aid_mid_index on cast (aid, mid);

Use .read to read in the file create.txt and execute the statements in sqlite.

sqlite> .read create.txt

Use .schema to see that all the tables were created. This will list the CREATE TABLE and CREATE INDEX statements.

sqlite> .schema

Task 2

Copy the files “movies.tsv [https://github.com/BRITE-REU/programming-workshops/blob/master/source/workshops/06_SQL/data/movies.tsv]”, “actors.tsv [https://github.com/BRITE-REU/programming-workshops/blob/master/source/workshops/06_SQL/data/actors.tsv]”, and “cast.tsv [https://github.com/BRITE-REU/programming-workshops/blob/master/source/workshops/06_SQL/data/cast.tsv]” into your directory and load their data into the tables you’ve created. Use something similar to the following for each file.

sqlite> .mode tabs
sqlite> .import movies.tsv movies

Confirm that data has been loaded into each table using commands like the following, which list the first 10 lines from a table. Note that the .mode and .headers commands make the output easy to read. select * means output all fields of each row.

sqlite> .mode column
sqlite> .headers on
sqlite> select * from movies limit 10;

Note that if you get the continuation symbol …> it means you hit return before the command was complete. Either continue typing or add a missing semicolon (;) at the end.

sqlite> select * from movies limit 10
...>;

Confirm the number of rows of data in the table. select count(*) means count the number of rows in the table.

sqlite> select count(*) from movies;

Task 3

Write SQL select statements to get the answers to the listed questions. Use the format shown below.

SELECT field name, field name, ...
FROM table name
WHERE condition [AND|OR condition etc.]
GROUP BY field name
ORDER BY field name [asc|desc] ...
LIMIT integer

Try It At Home

Follow these steps to add movie ratings to your database.

	
	Create a ratings table. It should have three fields:

	
	mid – a unique integer identifier for the movie (set this as the primary key)

	rating – a floating point value for the movie rating (datatype: real)

	votes – an integer value for the number of votes received by the movie

	Download the data file “ratings.tsv [https://github.com/BRITE-REU/programming-workshops/blob/master/source/workshops/06_SQL/data/ratings.tsv]”

	Import the data into your table

Asnwer these queries

	How many movies are rated?

	How many movies have more than 5000 votes?

	What are the top ten rated movies with at least 5000 votes? With at least 50,000 votes? With less than 5000 votes?

	What is the range of ratings (use min() for low and max() for high)?

	Show the ratings, votes, and year of all Star Wars movies, from highest to lowest.

	What is the distribution of ratings in bins of size 1 (i.e., how many are rated from 0 to 0.999, from 1 to 1.999, etc). To do this you can use 1) the round() function on the ratings and 2) GROUP BY.

	What is the distribution of votes in bins of size 1000?

SQLite Dot Commands

sqlite3 dot commands

.quit Exit sqlite3
.headers on|off Turn display of field names on or off
.help Show this message
.import FILE TABLE Import data from FILE into TABLE
.mode OPTION Set output mode where OPTION is one of:
 csv Comma-separated values
 tabs Tab-separated values
 list Values delimited by .separator strings
 column Left-aligned columns for display (use with .width)
.open FILE Close existing database and open FILE database
.output FILE|stdout Send output (such as result of SQL query) to FILE or screen
.read FILE Execute SQL in FILE
.schema Show the CREATE statements in this database
.separator "x" Change the column separator to x for both .import and output
.show Show the current values for various settings
.width n1 n2 … Set column widths for "column" mode, 0 means auto set column,
 negative values right-justify

 Solutions to Common Queries

Solutions to Common Queries

Number of movies

select count(*)
from movies;

Number of actors

select count(*)
from actors;

Number of rows in cast

select count(*)
from cast;

Movies in a range of mid values

select *
from movies
where mid>112303 and mid <114000
limit 10;

Movies named “Frozen” (case sensitive)

select *
from movies
where title = "Frozen"
limit 10;

Movies name “frozen” (case insensitive)

select *
from movies
where title like "frozen"
limit 10;

Movies with title containing “star”.

select *
from movies
where title like "%star%"
limit 10;

Movies with “adventure” in genres

select *
from movies
where genres like "%adventure%"
limit 10;

Minimum year of movies in database

select min(year)
from movies;

Maximum year of movies in database

select max(year)
from movies;

Count of movies per year

select year, count(year)
from movies
group by year
limit 20;

Average number of actors per movie (uses subquery)

select avg(n)
from (
 select count(aid) as n
 from cast
 group by mid
);

Actors in movies titled “Frozen”

select mid, title, year, name, role, aid
from movies join cast using(mid) join actors using(aid)
where title like "Frozen";

Movies for Emma Stone sorted descending by year

select name, title, year
from movies join cast using(mid) join actors using(aid)
where name="Emma Stone"
order by year desc;

Movies for Chris Evans sorted by title

select name, title, year
from movies join cast using(mid) join actors using(aid)
where name="Chris Evans"
order by title;

Movies for George Clooney sorted by title

select name, title, year
from movies join cast using(mid) join actors using(aid)
where name="George Clooney"
order by title;

Top actors (most movies) over 30

select name, count(mid) as c
from cast join actors using(aid)
group by name
having c >= 30
order by c desc
limit 10;

Top actors (most movies) since 2015

select name, count(mid)
from movies join cast using(mid) join actors using(aid)
where year >= 2015
group by name
order by count(mid) desc
limit 10;

Same two actors in two movies (complete version, note less than (<) instead of not equal (<>) in final part of the where to avoid reversed duplicates)

[image: ../../_images/two.actors.two.movies.png]
select a1.name, a2.name, m1.title, m2.title
from actors a1 join cast c1 using (aid)
 join cast as c2 using(mid)
 join cast as c3 on c1.aid=c3.aid
 join cast as c4 on c2.aid = c4.aid and c3.mid=c4.mid
 join actors a2 on c4.aid=a2.aid
 join movies as m1 on m1.mid=c1.mid
 join movies as m2 on m2.mid=c4.mid
where c1.aid <> c2.aid and c1.mid < c3.mid
limit 10;

Same two actors in two movies, one of which is Emma Stone

select a1.name, a2.name, m1.title, m2.title
from actors a1 join cast c1 using (aid)
 join cast as c2 using(mid)
 join cast as c3 on c1.aid=c3.aid
 join cast as c4 on c2.aid = c4.aid and c3.mid=c4.mid
 join actors a2 on c4.aid=a2.aid
 join movies as m1 on m1.mid=c1.mid
 join movies as m2 on m2.mid=c4.mid
where c1.aid <> c2.aid and c1.mid < c3.mid and a1.name like "Emma Stone"
limit 10;

 Posters

Posters

	Abstracts
	Abstract Draft Guidelines

	Posters
	Poster Templates

	Poster Draft Guidelines

	What to look for when reading a poster

	Submission Deadlines
	Travel Award

	Abstract

 Abstracts

Abstracts

Abstract Draft Guidelines

	Include:

	
	Title

	Motivation and Background

	Question or Goal

	Methods and Data

	Results

	Discussion and Future work

	Avoid:

	
	undefined words or phrases

	vagueness

	sloppy grammar

From the ABRCMS National Conference website: “Your abstract must contain a hypothesis or statement about the problem under investigation, a statement of the experimental methods/methodology used, essential results provided in summary form (even if preliminary), and a conclusion that explains how the work contributes to the hypothesis or statement of problem.”

 Posters

Posters

Poster Templates

	The following are suggested posters templates.

	
	Three column red [https://github.com/BRITE-REU/programming-workshops/blob/master/source/workshops/07_posters/data/36x48_phdposters_template%20red.pptx]

	Three column blue [https://github.com/BRITE-REU/programming-workshops/blob/master/source/workshops/07_posters/data/36x48_phdposters_template%20blue.pptx]

Poster Draft Guidelines

	Title

	Authors

	
	Affiliations of Authors

	
	Yours should be your school and “Boston University Bioinformatics BRITE REU Program, Summer 2018”

	Abstract

	
	Text for

	
	Motivation and Background

	Methods

	Results

	Discussion and Future Work

	Figures

	References

	
	Acknowledgements

	
	Include: “This work was funded, in part, by NSF grant DBI-1559829, awarded to the Boston University Bioinformatics BRITE REU program, [and if other grants] and <grant agency, like NSF or NIH> grant <grant number>.”

What to look for when reading a poster

	Contents

	
	Does the abstract say briefly what the authors did, why they did it (including importance), what results they got?

	Is there an introduction to basic concepts?

	Does it use diagrams or flowcharts to increase clarity?

	Does the methods section describe briefly what was done and how? what data was used?

	Does the results section make clear what was the outcome?

	Are graphs and figures clear, well labeled, and described. Are important results highlighted?

	Does the conclusion discuss the importance of the results and what further work needs to be done?

	Is there a reference section with relevant articles and books?

	Is there an acknowledgement section that contains grant support information?

	Appearance and overall effect

	
	Is it interesting?

	Is there a good mix of text and figures?

	Was there a good flow in the story?

	Did you learn something from it?

 Submission Deadlines

Submission Deadlines

2018 ABRCMS National Conference

November 14-17, 2018

Indianapolis, Indiana

Travel Award

Deadline Aug 22 at 11:59 p.m. PDT

Apply for a travel award [http://www.abrcms.org/index.php/register/apply-for-a-travel-award]

Abstract

Deadline Sept 7 at 11:59 p.m. PDT

Submit an abstract [http://www.abrcms.org/index.php/present-at-abrcms/submit-an-abstract]

 Index

Index

_images/Plot_Parameters.png
Scatterplot

.
.
o | ee
™
.
- .
wn
2 « 7 .
©
©))
o
.
o o % °
o o
SO o s
e
.
v _| ® .
o
T T
2 3

Car Weight

_images/Qsub_Resources.png
General Directives

Directive

Description

-l h_rt=hh:mm:ss

Hard run time limit in hh:mm:ss format. The default is 12 hours.

-P project_name

Project to which this jobs is to be assigned. This directive is mandatory for all users
associated with any Med.Campus project.

-N job_name Specifies the job name. The default is the script or command name.

-0 outputfile File name for the stdout output of the job.

-e errfile File name for the stderr output of the job.

-y Merge the error and output stream files into a single file.

el Controls when the batch system sends email to you. The possible values are — when the job

begins (b), ends (e), is aborted (a), is suspended (s), or never (n) — default.

-M user_email

Overwrites the default email address used to send the job report.

-V

All current environment variables should be exported to the batch job.

-v env=value

Set the runtime environment variable env to value.

-hold_jid job_list

Setup job dependency list. job_list is a comma separated list of job ids and/or job names
which must complete before this job can run. See Advanced Batch System Usage for more
information.

_images/Plot_Example.png
[eXe}

0og

T T
14 0C

Bdwgsieoyw

Sl

oL

mtcars$wt

_images/Plot_Functions.png
Function name Plot produced

boxploi(x) “Box and whiskers” plot

piex) Circular pie chart

hist(x) Histogram of the frequencies of x

barplot(x) Histogram of the values of x

stripchart(x) Plots values of x along a line

dotchari(x) Cleveland dot plot

pairso) For a matrix x, plots all bivariate pairs

plotis(x) Plot of x with respect to time (index values of the
vector unless specified)

contour(x,y.2) Contour plot of vectors x 2nd y, z must be a matrix of
dimension rows=x and columns=y

image(ry.z) ‘Same as contour plot but uses colorsinstead of ines

persp(xy.2) 3-d contour plot

Copyright May 2007, K Seefeld 50

_images/cd_root.png
jeff@Nosferatu:~$ cd /
jeff@Nosferatu:/$ s

bin home 1ib64 opt snap var

boot initrd.ing ibx32 proc srv vnlinuz
cdrom initrd.ing.old lost:found root sys vmlinuz.old
dev lib nedia run @A

etc 1ib32 mnt sbin usr

jeff@Nosferatu:/s ll

_images/cd_up.png
©®0 jeff@Nosferatu: ~

poem.txt prose.txt there_is_nothing_in_here
jeff@Nosferatu:~/example$ man ls

jeff@Nosferatu:~/example$ s -1

total 8

-r--r--r-- 1 jeff jeff 470 Jun 11 ©1:69 poen.txt
-rw-rw-r-- 1 jeff jeff @ Jun 11 01:09 prose.txt
druxrwxr-x 2 jeff jeff 4096 Jun 11 01:69 there_is_nothing_i
n_here

jeff@Nosferatu:~/example$ 1s -al

total 20

druxruxr-x 3 jeff jeff 4096 Jun 11 64:20

druxr-xr-x 42 jeff jeff 4096 Jun 11 01:09 ..

-rw-rw-r-- 1 jeff jeff 17 Jun 11 01:10 .Im_hiding
-r--r--r-- 1 jeff jeff 476 Jun 11 01:09 poen.txt
-rw-rw-r-- 1 jeff jeff @ Jun 11 01:09 prose.txt
druxrwxr-x 2 jeff jeff 4096 Jun 11 01:09 there_is_nothing_
in_here

jeff@Nosferatu:~/exanple$ cd ..
jeff@Nosferatu:~$ s

anaconda3 example notes R
Desktop examples.desktop Pictures snap
Documents igv Prograns Templates
Downloads Music Public Videos

jeff@Nosferatu:~$ [l

_images/RStudio_Console.png
=0

@ untited1 | Environment
& | B Osowceonsave | Q - £1] ~ [#Run | 55 | [Source @a List ~
2 @ Global Erowoan

bata
00z 84 obs. of 5 variables =]
©emp.data 5 obs. of 3 variables =]
Omtcars 32 obs. of 11 variables]
Values
op List of 9

x num [1:81 12345678

y num [1:81 12345678
Files Plots Packages Help Viewer =0

& Export ~

11| (Top Leveh = R Script +

Console ~/

VY VYUYV VYY YYDV Y Yy

_images/cd.png
jeff@Nosferatu:~$ s

anaconda3 example notes. R
Desktop examples.desktop Pictures snap
Documents igv Prograns Templates
Downloads Music Public Videos

jeff@Nosferatu:~$ cd example/
jeff@Nosferatu:~/exanple$ ls

poem.txt prose.txt there is_nothing_in_here
jeff@Nosferatu:~/exanples |

_images/clustering.png
MiniBatchKMeansAffinityPropagation

MeanShift

SpectralClustering

Ward

AgglomerativeClustering DBSCAN

Birch

GaussianMixture

.02s|

_images/cognitive_map.png
COGNITIVE MAP

—
Hyperlipid Distit Pregnancy
N
= =
[|
= =
= =
= =
= — =
Digestion [Sex p—
=] | == =
=
=

_images/confusion_matrix.png
Predicted: | Predicted:
n=165 NO YES
Actual:
NO TN =50 FP=10 60
Actual:
YES FN=5 TP =100 105
55 110

nav.xhtml

 Table of Contents

 		
 Welcome to the BRITE-REU Programming Workshop!

 		
 Instructions

 		
 Linux and Bash

 		
 Windows 10 (linux subsystem for windows)

 		
 Windows 8- (Installing Babun)

 		
 Mac / Linux

 		
 Git

 		
 Git command-line

 		
 Git GUI (cross-platform)

 		
 SSH

 		
 Windows

 		
 Mac and Linux

 		
 Python

 		
 Anaconda

 		
 R

 		
 Mac

 		
 Windows Users

 		
 Machine Learning

 		
 RapidMiner Studio

 		
 SQL

 		
 SQLite

 		
 MySQL – We are not using MySQL this year!

 		
 Workshop 1: Linux and Bash

 		
 Introduction to the Command Line

 		
 Navigation and Working with Files

 		
 Grep, AWK and Sed

 		
 Materials to download

 		
 Grep

 		
 AWK:

 		
 SED:

 		
 Editing Files in the Terminal

 		
 Piping and Redirection

 		
 Processes

 		
 Bash Scripting

 		
 A minimal example

 		
 Execution

 		
 Variables

 		
 Command Substitution

 		
 Exporting variables

 		
 Input

 		
 Arithmetic

 		
 If statements

 		
 Loops

 		
 Functions

 		
 Tips & Tricks

 		
 Customizing your .bashrc

 		
 Brace expansion

 		
 Aliasing

 		
 Processes

 		
 History Substitutions

 		
 Command Substitutions

 		
 Workshop 2: SCC and git

 		
 The SCC

 		
 Shared Computing Cluster

 		
 SCC Architecture

 		
 File Storage

 		
 SSH Login

 		
 Submitting jobs

 		
 Types of Jobs

 		
 Submitting jobs using qsub

 		
 Resources required to run a job

 		
 Job status and deletion

 		
 Version control with git

 		
 Version control platforms

 		
 Installing configuration

 		
 Useful tips

 		
 Issue tracking

 		
 Workshop 2

 		
 Part 2.1: SCC and qsub

 		
 Part 2.2: Version control with git

 		
 Workshop 3: Python

 		
 Python 3

 		
 Getting Started

 		
 Basic Python Variables and Operations

 		
 If, Else, and Elif Statements

 		
 Iteration and Looping

 		
 For loops

 		
 Nested For Loops

 		
 While Loops

 		
 Nested While Loops

 		
 Functions

 		
 Scope

 		
 File Input and Output.

 		
 Importing Modules

 		
 Conclusion

 		
 Protein Synthesis Workshop

 		
 Instructor: Dakota Hawkins

 		
 Read FASTA Files:

 		
 Write FASTA Files:

 		
 Read codon_table.csv:

 		
 Transcribe DNA to RNA:

 		
 Translate RNA to Protein:

 		
 Tie the Steps Together:

 		
 Workshop 4: R

 		
 R and RStudio: Introduction and Data Structures

 		
 Getting Started

 		
 Basic Operations in R

 		
 Conditional Statements and Looping

 		
 Exploring Data in R

 		
 R packages and libraries

 		
 Loading Data

 		
 Data Exploration

 		
 R Workshop

 		
 Load Packages

 		
 Import Airway Data

 		
 Explore Airway Dataset

 		
 Differential Expression Analysis using DESeq2

 		
 Manipulate and Visualize Results

 		
 R Workshop Solution

 		
 Load Packages

 		
 Import Airway Data

 		
 Explore Airway Dataset

 		
 Differential Expression Analysis using DESeq2

 		
 Manipulate and Visualize Results

 		
 Workshop 5: Machine learning

 		
 Dataset exploration and validation

 		
 Features

 		
 Data exploration

 		
 Data preparation

 		
 Learning models

 		
 Unsupervised

 		
 Dimensionality reduction

 		
 Clustering

 		
 Supervised

 		
 Classification models

 		
 Parameters

 		
 Cross validation

 		
 Fitness of the model

 		
 Semi-supervised learning

 		
 Summary notes

 		
 Machine Learning Workshop

 		
 Data exploration

 		
 Unsupervised learning

 		
 Supervised learning

 		
 Workshop 6: SQL

 		
 Relational Databases

 		
 Database Design

 		
 Adding Data

 		
 Querying Data

 		
 SQL Workshop

 		
 Tasks

 		
 SQLite Dot Commands

 		
 Solutions to Common Queries

 		
 Posters

 		
 Abstracts

 		
 Abstract Draft Guidelines

 		
 Posters

 		
 Poster Templates

 		
 Poster Draft Guidelines

 		
 What to look for when reading a poster

 		
 Submission Deadlines

 		
 Travel Award

 		
 Abstract

_images/executable.png
'©® @ jeff@Nosferatu: ~/Programs
jeff@Nosferatu:~/Prograns$ ls

2 b.py out. txt

3 eval.R poker.py
add_shift.compile hello_world.py __pycache__
add_shift.cpp HoTResDB queens
add_shift.exe HW2.py starting_git.txt
a.py mypysql.py
jeff@Nosferatu:~/Programs$./hello_world.py

Hello World!

jeff@Nosferatu:~/Programss hello_world.py

hello_world.py: command not found
jeff@Nosferatu:~/Progranss 'pwd" /hello_world.py
Hello World!!
jeff@Nosferatu:~/Programss . hello_world.py

bash: hello_world.py: line 3: syntax error near unexpected
token ""Hello World
bash: hello_world.py: line 3: ‘print("Hello World!t")
jeff@Nosferatu:~/Programs$ [l

_images/file_management.png
©© 0 jeff@Nosferatu: ~/example

jeff@Nosferatu:~/example$ ls

poen.txt prose.txt there_is_nothing_in_here
jeff@Nosferatu:~/example$ touch a b c
jeff@Nosferatu:~/example$ ls

a b c poem.txt prose.txt there_is_nothing_in_here
jeff@Nosferatu:~/example$ nv a d
jeff@Nosferatu:~/example$ ls

b c d poem.txt prose.txt there_is_nothing_in_here
jeff@Nosferatu:~/example$ nv c z
jeff@Nosferatu:~/example$ ls

b d poem.txt prose.txt there_is_nothing_in_here z
jeff@Nosferatu:~/example$ mv z there_is_nothing_in_here/
jeff@Nosferatu:~/example$ cd there_is_nothing_in_here/
jeff@Nosferatu:~/example/there_is_nothing_in_here$ ls

z

jeff@Nosferatu:~/example/there_is_nothing_in_here$ cd ..
jeff@Nosferatu:~/example$ ls

b d poem.txt prose.txt there_is_nothing_in_here
jeff@Nosferatu:~/example$ cp poem.txt poem2.txt
jeff@Nosferatu:~/example$ ls

b poem2.txt prose.txt

d poem.txt there_is_nothing_in_here
jeff@Nosferatu:~/example$ cp poen.txt there_is_nothing_in_h
ere/

jeff@Nosferatu:~/example$ ls there_is_nothing_in_here/
poem.txt z

jeff@Nosferatu:~/example$ mkdir dir
jeff@Nosferatu:~/example$ ls

b dir poen.txt there_is_nothing_in_here

d poem2.txt prose.txt

jeff@Nosferatu:~/example$ rm b d poem2.txt there_is_nothing
_in_here/z there_is_nothing_in_here/poen. txt

rm: remove write-protected regular file 'poem2.txt'? y
rm: remove write-protected regular file 'there_is_nothing_i
n_here/poem.txt'? y

jeff@Nosferatu:~/example$ rndir dir/
jeff@Nosferatu:~/examples]

_images/corr_matrix.png

_images/cross_validation.png
Complete

Data

> - Training | | Training | | Training | [Training
= | Training - Training | | Training | | Training
= [Training | | Training - Training | | Training
=) | Training | | Training | | Training - Training
= | Training | | Training | | Training | | Training -

v v vy

_images/file_stuff_coin.png
©© 6 jeff@Nosferatu: ~/example
jeff@Nosferatu:~/example$ head poen.txt
Mary had a little lamb,

It's fleece was white as snow;

And everywhere that Mary went

The lamb was sure to go.

He followed her to school one day
which was against the rule;

It made the children laugh and play,
To see a lamb at school.

jeff@Nosferatu:~/example$ head -3 poem.txt
Mary had a little lamb,

It's fleece was white as snow;

And everywhere that Mary went
jeff@Nosferatu:~/example$ tail poem.txt
But still he lingered near;

And waited patiently about

Till Mary did appear

What makes the lamb love Mary so?"
The eager chldren cry;

"Why, Mary loves the lamb, you know,"
The teacher did reply.

jeff@Nosferatu:~/exanple$ tail -3 poem.txt
The teacher did reply.

jeff@Nosferatu:~/examples]

_images/file_stuff_less1.png
jeff@Nosferatu

_images/file_permissions.png
©© O root@Nosferatu: /home/jeff/example

root@Nosferatu: /home/jeff/exanple#
total 8

-r--rwxr-- 1 root jeff 470 Jun 11
rw-rw-r-- 1 jeff jeff 0 Jun 11
drwxrwxr-x 2 jeff jeff 4696 Jun 11
n_here

root@Nosferatu: /home/jeff/exanple#
root@Nosferatu: /home/jeff/example#
total 8

-rwxrw-r-- 1 root jeff 470 Jun 11
rw-rw-r-- 1 jeff jeff 0 Jun 11
drwxrwxr-x 2 jeff jeff 4696 Jun 11
n_here

root@Nosferatu: /home/jeff/exanple#
root@Nosferatu: /home/jeff/example#
total 8

-rwxrw-r-- 1 jeff jeff 470 Jun 11
rw-rw-r-- 1 jeff jeff 0 Jun 11
drwxrwxr-x 2 jeff jeff 4696 Jun 11
n_here

root@Nosferatu: /home/jeff/example#

1s -1

01:09
01:09
05:08

chmod
1s -1

01:09
01:09
05:08

chown
1s -1

01:09
01:09
05:08

poen. txt
prose. txt
there_is_nothing_i

764 poen. txt
poen. txt

prose. txt
there_is_nothing_i
jeff poem.txt
poen. txt

prose. txt
there_is_nothing_i

_images/file_stuff_cat.png
jeff@Nosferatu: ~/example

jeff@Nosferatu:~/example$ cat poem.txt
Mary had a little lamb,

It's fleece was white as snow;

And everywhere that Mary went

The lamb was sure to go.

He followed her to school one day
which was against the rule;

It made the children laugh and play,
To see a lamb at school.

And so the teacher turned him out,
But still he lingered near;

And waited patiently about

Till Mary did appear

"What makes the lamb love Mary so?"
The eager chldren cry;
"Why, Mary loves the lamb, you know,
The teacher did reply.

jeff@Nosferatu:~/examples]

_images/file_stuff_less2.png
@ jeff@Nosferatu: ~/example

Mary had a little lamb,
It's fleece was white as snow;
And everywhere that Mary went
The lamb was sure to go.

He followed her to school one day
which was against the rule;

It made the children laugh and play,
To see a lamb at school.

And so the teacher turned him out,
But still he lingered near;

And waited patiently about

Till Mary did appear

What makes the lamb love Mary so?"
The eager chldren cry;
"Why, Mary loves the lamb, you know,
The teacher did reply.

_images/fork_atlassian.gif
E tutorials.git.bitbucke... tutorials account / tutorials.git.bitbucket.org

Overview
Q Overview
L ol & HTTPS ¥ https://emmapal@bitbucket.org/tut @ -
ource
Recent activity
¢ Commits i
oI VG Lo AR
Open PRs Watchers
§s Branches Language HTML/CSS e
Access level Read
9 Pull requests 3 4017 O Added my quote
. Branches Forks Pull request #4019 created in tutorials/tuto.
O pooines
B Downloads - 4 i
& Inspirational Quotes from Your Team in Space €3 Adding s quata for my team
Pull request #4017 approved in tutorials/tut...
@ Boards This page lists the inspirational quotes for you and your team in space. This is a family- Yev - § hours ago
oriented team, so only post stuff you are comfortable showing to your family. If your family
i seriously abnormal, my condolences, and I'm going to reject your sadly twisted pull € fixed quotes
request. Pull request #4018 approved in tutorials/tu...

Yev-6 h
To add a quote, edit editme.html . Please do not edit any other files. Sl

The page is hosted under: http://tutorials.git.bitbucket.org. 9 fixed quotes
Pull request #4018 created in tutorials/tuto...
Images are encouraged, but should not be committed to this repo. So please link directly to e R

externally hosted content.
€ Adding a quote for my team

The editme.html is in XHTML format. This is a little stricter than HTML and among other — " o di al

things requires every tag to be explicitly closed. For the <ing /> tag that means it MUST LLibs T a iy L b LA S o
and with {3, Paul Sties - 6 hours ago

Please don't change another user's quote as Il reject that as well. After all, some quotes € Making a change

are meaningful to the people who submit them. Pull request #4016 created in tutorials/tuto...

Akshata - 6 hours ago

s i

_images/fork_github.png
bioinform / varsim Owmcns 1 s ..

© code sues 13 Pull equests 2

VarSim: A high-fidelity simulation validation framework for high-throughput genome sequencing with cancer applications.
htp:/ibicinform. github joNvarsim/

smdason vakdaton g vougnput sequencng genomcs.

F— 21 s p—
e | o v s o [

atest commi b33530 on Sep 11
- gitub ayear ago
-
- webapp "

gignore

COPYRIGHT It

LICENSE 1

_images/gitkraken.png
g2« indexcdiny -

o Vewng s shouns e h @
Q. prmee

-
*

=G BB R
[e—————
| omons
| pe———
| Mrge s 8460 v0m mknar.
|t Somse>
st 6o
J————
[——
| et s 4525 rom s s
[—————

| org s 36 .. 3wk 30
[——

| Merp ot s 4577 rom e
(———
EE Y —

§ =

[———
[T ——

| M s 468 ot
e ——

7 e ot o s o pe.
L —

e a0 oyt
[———.
R T e——

B s e i o

Q@ =
pr— o
ndex: committhe changs tohe ndex
propery

N e s e g

Eovard Thamson
s s 01990

S omeates
et -
3 srecionsc

5 srrndexc

et

5 srmdenn
) sosasc

5 ssirecoutrees
[EpeR—
SR m—
5 tesstndeniamesc

5 tessindenrece

3 ssrenssesbmodiec

o oom [Feedbeck] + JNOY

_images/grz_tissues_PCA.png
PC2: 19.3% variance

PC1 vs PC2: top 750 variable genes

PC1:55.6% variance

tissue
< ban
o s
o er

age inweeks
o Swase
A Twasks
o 10mesks
® 12 wesk
. 1 wesks

_images/ggplot2_example.png
354

304

T T
< o
D 134

uoj[e9 Jed sallN

154
104

Car Weight

_images/ggplot2_variable.png
Miles Per Gallon

354

30| ©®
factor(cyl)
.4
254 °6
(] 8
[
.. Y qsec
® 150
204 . ° @ 175
‘ @ 20.0
PY @225
: []
151 o
4 [}
L]
10 oo
3 4

Car Weight

_images/learning_curve.png
Log loss.

03

08

07

08

0s

Logistic Regression Learning curve.

— Train Log loss
— TestLog loss
+4- one 5D

T T T T T T T
200 400 600 80D 1000 1200 1400

Numnber of samples.

_images/ls.png
jeff@Nosferatu:~$ s

anaconda3 example notes. R

Desktop examples.desktop Pictures snap
Documents igv Prograns Templates
Downloads Music Public Videos

jeff@Nosferatu:~$ I

_images/hierarchical_clustering.png
base trunk

leaves

intermediate
groups
(branches)

== 11 terminal groups

_images/k-means.png
step 0

Z uoisuswip.

dimension 1

_images/man_ls-l.png
00060 JefF@Nosferatu: ~/example
jeff@Nosferatu:~$ s

anaconda3 example notes R
Desktop examples.desktop Pictures snap
Documents igv Prograns Templates
Downloads Music Public Videos

jeff@Nosferatu:~5 cd example/
jeff@Nosferatu:~/example$ ls

poen.txt prose.txt there_is_nothing_in_here
jeff@Nosferatu:~/example$ man ls
jeff@Nosferatu:~/example$ s -1

total 8

-rw-rw-r-- 1 jeff jeff 470 Jun 11 01:09 poem.txt
-rw-rw-r-- 1 jeff jeff © Jun 11 01:09 prose.txt
drwxrwxr-x 2 jeff jeff 4096 Jun 11 01:09 there_is_nothing_i
n_here

jeff@Nosferatu:~/exanples Il

_images/man_ls-la.png
'©®® 0 jeFF@Nosferatu: ~/example

anaconda3 example notes
Desktop examples.desktop Pictures
Documents igv Prograns
Downloads Music Public

jeff@Nosferatu:~5 cd example/
jeff@Nosferatu:~/exanple$ ls

R

snap
Templates
Videos

poen.txt prose.txt there_is_nothing_in_here

jeff@Nosferatu:~/exanple$ man
jeff@Nosferatu:~/example$ 1s
total 8

1s
-l

-rw-rw-r-- 1 jeff jeff 470 Jun 11 01:09 poem.txt
-rw-rw-r-- 1 jeff jeff © Jun 11 01:09 prose.txt
druxrwxr-x 2 jeff jeff 4096 Jun 11 01:09 there_is_nothing_i

n_here
jeff@Nosferatu:~/exanple$ 1s
total 20

druxrwxr-x 3 jeff jeff 4896

drwxr-xr-x 42 jeff jeff 4096
-rw-rw-r-- 1 jeff jeff 17
-rw-rw-r-- 1 jeff jeff 470
-rw-rw-r-- 1 jeff jeff ®
druxrwxr-x 2 jeff jeff 4896
in_here

jeff@Nosferatu:~/examples]

al

Jun
Jun
Jun
Jun
Jun
Jun

11
11
11
11
11
11

o1:
01:

01
01
01
01

09
09
:10
:09
:09
:09

.In_hiding

poem. txt

prose. txt
there_is_nothing_

_images/man.png
jeff@Nosferatu:~$ s

anaconda3 example notes. R
Desktop examples.desktop Pictures snap
Documents igv Prograns Templates
Downloads Music Public Videos

jeff@Nosferatu:~$ cd example/
jeff@Nosferatu:~/exanple$ ls

poem.txt prose.txt there_is_nothing_in_here
jeff@Nosferatu:~/example$ man LUsf]

_images/movies.actors.cast.er.diagram.with.primary.keys.png
Actor

aid @ mid

Movie

_images/popd.png
OO0 jeff@Nosferatu: ~

jeff@Nosferatu:~$ pushd example/there_is_nothing_in_here/
~/example/there_is_nothing_in_here ~
jeff@Nosferatu:~/exanple/there_is_nothing_in_here$ pushd /
] ~/example/there_is_nothing_in_here ~

jeff@Nosferatu:/$ cd bin/

jeff@Nosferatu:/bin$ popd
~/example/there_is_nothing_in_here ~
jeff@Nosferatu:~/exanple/there_is_nothing_in_here$ pwd
Jhome/jeff/example/there_is_nothing_in_here
jeff@Nosferatu:~/exanple/there_is_nothing_in_here$ popd

jeff@Nosferatu:~$ pwd
Jhome/jeff
jeff@Nosferatu:~$ Il

_images/man_ls.png
©® O jeff@Nosferatu: ~/example
Ls(1) User Commands Ls(1)

NAME
1s - list directory contents

SYNOPSIS
1s [OPTION]... [EILE]...

DESCRIPTION
List information about the FILEs (the current
directory by default). Sort entries alphabeti-
cally if none of -cftuvsUX nor --sort is speci-
fied.

Mandatory arguments to long options are mandatory
for short options too.

-a, --all
do not ignore entries starting with .

-A, --almost-all
do not list implied . and .

_images/movies.actors.cast.er.diagram.png
Actor

Movie

_images/python.png
D Anaconda Navigator
File Help

A Home
@ Environments

& Projects (beta)

Learning

Documentation

Developer Blog

Feedback

) ANACONDA NAVIGATOR

Applications on | base (root) <
o o
o
-
Jupyter
N
Jupyterlab notebook
Aoxa 540

An extensible environment for interactive
and reproducible computing, based on the.
Jupyter Notebook and Arct

Launch

orange3
341
Component based data mining Framework.
Data visualization and data analysis for
novice and expert. Interactive workflows
with a large toolbor.

Install

notebook environment. Edit and run

human-readable docs while describing the
data analysis.
Launch
]
rstudio
11383

Aset of integrated tools designed to help.
you be more productive with R. Includes R
‘essentials and notebooks.

Install

o
qtconsole
431
PYQE GUI that supports inline figures,
proper muliline editing with synt

highlighting, graphical calci

Launch

spyder

326
Scientific PYthon Development
EnviRonment. Powerful Python IDE with
advanced editing, interactive testing,
debugging and introspection features

Launch

]
vscode
21222
Streamlined code editor with support for

development operations like debugaing,
ask running and version control.

Launch

glueviz
0120
Multidimensional data visualization across
files. Explore relationships within and
among related datosets.

Install

Refresh

_images/pushd.png
©© 0 jeff@Nosferatu: /

jeff@Nosferatu:~$ pushd example/there_is_nothing_in_here/
~/example/there_is_nothing_in_here ~
jeff@Nosferatu:~/example/there_is_nothing_in_here$ pushd /
] ~/example/there_is_nothing_in_here ~
jeff@Nosferatu:/$ |

_images/pwd.png
'©® 0 jeFf@Nosferatu: ~/example/there_is_nothing_in_here

jeff@Nosferatu:~$ pwd

Jhome/jeff

jeff@Nosferatu:~$ cd example/there_is_nothing_in_here/
jeff@Nosferatu:~/exanple/there_is_nothing_in_here$ pwd
Jhome/jeff/example/there_is_nothing_in_here
jeff@Nosferatu:~/exanple/there_is_nothing_in_heres [

_images/ssh_2.png
By ®» 4 @ @ % © B

FTP SFTP Serial Fie/ur Shell

Choose a session type

_images/ssh_3.png
SFTP Serial Fie/url Shell

[e et ¢ soomar st

@xiifomardng [UlConpressin Remote enveonment neracveshel

Sxeate command 100 ot et ster command ende
| Display SFTP browser [Automatialy folow current SSH folder path (experimental)

[luseprvatekey [| eaopton

[lenste Googe 2stepauhentcton

] Comnect trough ssH gateway

Use prvatekey

_images/roc_curve.png
True Positive rate (Sensitivity)

100

80

60

40

20

0 20 40 60 8 100
False Positve rate (100-Specificity)

_images/ssh_1.png
= b

(Unix utilities and X-server on GnujCyguin)
Your computer drives are accessible through the /drives path
Your DISPLAY 4 set to 126197 162.120:2.0

When using 551, your remote DISPLAY i sutomstically forvarded
Each comand status 4 specifiod by a spocial symol (v o %)

Taportant:

For more information: hi1p://sohaxtars. sobatck.net/varsions .oho

(2613-10-2 16:15.30)

[pr———

_images/ssh_6.png
PUTTY Security Alert

a

The server' host key i not cached nthe registry. You
have na quarantee that the server i the computer you
thinktis,

The server's rsa2 key fingerprint s

sshorsa 1024 3c6ciSci99:50:b5:c61251Sard378:Be1d2 5 70l
I you trust tis host, it Yes to add the key to

PUTTY's cache and carry on connecting,

T you want ko carry on connecting just once, without

adding the key to the cache, it No.

T you do not trust this o, hit Cancel to abandon the.
cannection.

_images/supervised_flowchart.png
—

study design

!

data collection

!

data preparation

!

split

—

|

performance on train
ROC curve

train
I/

normaization normaization
feature selection -~
optimize parameters | |
10X valdation ;
leam model i

B feature extraction

fnaimodel | ——> testmodel

performance on test

_images/ssh_4.png
(onix WesTivios and X sérver an Goojcypein)

Your computer drives are sccessible through the /drives path
Each comand siatus 15 specified by & specil sy

For Sors inforastion: Mitar//aabastars. sabatihk net Avhrsions 5he

_images/ssh_5.png
R PuTTY Configuration

Category:

& Sesson Basic ptons foryour PuTTY session

L roars ‘Speoty the destnation you wart to connect to
Keypoard Host N (o P aderess) Pot
Bel | 2
Features Conneciionype:

& Window ORsx OTenet ORogn @SSH O Serl
e Load, save o delee a stored session
Transition Saved Sessons
Selecton
Colours

Defak Setings

& Connecion Lo
Data Soue
Proxy
Tenet Deete
Flogn
ssH
Seral o e

OAways ONever @ Only on clean ext
oot Open Cancel

_images/terminal.png
jeff@Nosferatu

_images/two.actors.two.movies.png
A1 C1 C2 C3 C4 A2
Actors Cast Cast Cast Cast Actors

aid aid, mid — mid, aid aid, mid——mid, aid aid
M1 M2
Movies Movies

mid mid

_images/Import_Cheatsheet.png
Data Import:

R’s tidyverse is built around tidy data stored
in tibbles, which are enhanced data frames.

B The front side of this sheet shows
'0:.[" how to read text files into R with

readr.

The reverse side shows how to

create tibbles with tibble and to

layout tidy data with tidyr.
OTHER TYPES OF DATA

Try one of the following packages to import
other types of files

« haven - SPSS, Stata, and SAS files
« readxl - excel files (.xls and .xlsx)
« DBI-databases

« jsonlite - json

« xml2-XML

« httr- Web APIs

« rvest- HTML (Web Scraping)

Save Data

Save x, an R object, to path, a file path, as:

Comma delimited file
write_csv(x, path, na = "NA", append = FALSE,
col_names = !append)

File with arbitrary delimiter

write_delim(x, path, delim="",na="NA",
append = FALSE, col_names = !append)
CSV for excel

write_excel_csv(x, path, na="NA", append =
FALSE, col_names = !append)
String to file
write_file(x, path, append = FALSE)
String vector to file, one element per line
write_lines(x,path, na="NA", append = FALSE)
Object to RDS file
write_rds(x, path, compress = c("none", "gz",
22", "xz"), ...)
Tab delimited files
write_tsv(x, path, na = "NA", append = FALSE,
col_names = !append)

@Studio

. CHEAT SHEET

Read Ta b u la r Data - These functions share the common arguments:

read_*(file, col_names = TRUE, col_types = NULL, locale = default_locale(), na=c("", "NA"),
quoted_na=TRUE, comment = "*, trim_ws = TRUE, skip = 0, n_max = Inf, guess_max = min(1000,
n_max), progress = interactive())

2 Comma Delimited Files
abc 1“‘?? read_csv("file.csv")
1,23 > 4 5 NA To make file.csv run:
45NA write_file(x = "a,b,c\n1,2,3\n4,5,NA", path = "file.csv")
AN NI Semi-colon Delimited Files
abic > 1 23 read_csv2("file2.csv")
1,23 4 5 NA write_file(x = "a;b;c\n1;2;3\n4;5;NA", path = "file2.csv")
4;5;NA
Files with Any Delimiter
alble NG read_delim("file.txt", delim="]")
1.2 3 write_file(x = "a|b|c\n1[2|3\n4|5|NA", path = "file.txt"
e | — EEE _filefx="alblc\n1i213\nal5INA, p)
4j5INA Fixed Width Files
read_fwf("file.fwf", col_positions = c(1, 3, 5))
ab c> [A[B]C] write_file(x="a b c\n123\n4 5 NA", path = "file.fwf")
123 | ™ s
15 NA Tab Delimited Files
read_tsv("file.tsv") Also read_table().
write_file(x = "a\tb\tc\n1\t2\t3\n4\t5\tNA", path = "file.tsv")
Example file nun skip lines
write_file("a,b,c\n1,2,3\n4,5,NA" "file.csv") 4 5 na read_csv(f,skip=1)
f<- "file.csv"
No header “H Read in a subset
read_csv(f, col_names = FALSE) 1 2 3 read_csv(f,n_max=1)

Provide header
read_csv(f, col_names =¢("x", "y", "z"))

NI Missing Values

NA 2 3 read_csv(f,na=c("1
4 5 NA

Read Non-Tabular Data

Read a file into a single string
read_file(file, locale = default_locale())

Read afile into a raw vector
read_file_raw(file)
Read each line into a raw vector

read_lines_raw(file, skip =0, n_max =-1L,
progress = interactive())

Read each line into its own string
read_lines(file, skip =0, n_max = -1L, na = character(),
locale = default_locale(), progress = interactive())
Read Apache style log files
read_log(file, col_names = FALSE, col_types = NULL, skip =0, n_max =-1, progress = interactive())

Data types

readr functions guess
the types of each column and

convert types when appropriate (but will NOT
convert strings to factors automatically).

A message shows the type of each column in the
result.

Parsed with column specification:

cols(a
age = col_integer(), egeisan
sex = col_character(), Ll

earn = col_double()

)

1. Use problems() to diagnose problems.
x <-read_csv("file.csv"); problems(x)

sexisa
character

2. Use a col_ function to guide parsing.
« col_guess() - the default
« col_character()
« col_double(), col_euro_double()
« col_datetime(format Also

col_date(format =""), col_time(format="")

« col_factor(levels, ordered = FALSE)
« col_integer()
« col_logical()
« col_number(), col_numeric()
« col_skip()

x <-read_csv("file.csv", col_types = cols(
A=col_double(),
B =col_logical(),
C =col_factor()))

3. Else, read in as character vectors then parse
with a parse_ function.

« parse_guess()

« parse_character()

« parse_datetime() Also parse_date() and
parse_time()

« parse_double()

« parse_factor()

« parse_integer()

« parse_logical()

« parse_number()

X$A <- parse_number(x$A)

RStudio® is a trademark of RStudio, Inc. « CC BY SA RStudio « info@rstudio.com « 844-448-1212 « rstudio.com « Learn more at tidyverse.org « readr 1.1.0« tibble 1.2.12+ tidyr 0.6.0« Updated: 2017-01

_images/Load_Dataset.png
LR data sets

Data sets in package ‘datasets’:

RirPassengers
BJsales
BJsales.lead (BJsales)
BOD

co2
Chickweight
DNase
EuStockMarkets
Formaldehyde
HairEyeColor
Harman23.cor
Harman74.cor
Indometh
Insectsprays
JohnsonJohnson
LakeHuron
LifeCycleSavings
Loblolly

Nile

orange
Orchardsprays
PlantGrowth
Puromycin
Seatbelts
Theoph

Titanic
ToothGrowth
UCBAdnissions
URDriverDeaths
UKgas
USAccDeaths
USArrests

data("C02")
head(C02)

Grouped Data: uptake ~ conc | Plant

Plant Type Treatment conc uptake
Qnl Quebec nonchilled 95 16.0
Qnl Quebec nonchilled 175 30.4
Qnl Quebec nonchi